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Abstract—In this work a CNN-based rail track detection algorithm
and two novel evaluation metrics are proposed. Rails define the region
of interest for object detection and localization algorithms of rail-
bound vehicles, like lane markings do for automotive driver assistance
functions. Looking at the analogies in significance and appearance
of both, it becomes apparent that rail and lane marking detection
could be solved similarly. Hence, this paper firstly introduces rail
detection using an adopted version of PINet, a regression net for
lane marking detection. The network is completely re-trained using
a novel loss function and our own railway dataset. Secondly, a post-
processing approach for clustering the detected rails into tracks using
geometric constraints is proposed. Finally, two track detection metrics
are introduced: The rail position offset metric (RPOM) and the track
centerline offset metric (TCOM), which allow precise assessment of
rail and track centerline detection results and can be cornerstones to
foster future developments in this area.

Index Terms—railway, track detection, rail detection, regression
network, detection metrics

I. INTRODUCTION

Convolutional Neural Networks (CNN) have become the state-
of-the-art in many computer vision tasks. Whether it is object detec-
tion, image segmentation, scene understanding or object tracking –
the development of automotive advanced driver assistance systems
(ADAS) and robotics has been and remains one of the main drivers
for scientific advancements in these research areas. Other sectors
are able to build on these developments while still having to cope
with their individual requirements when transferring knowledge
from automotive.

An important example to mention here is the rail sector where
ADAS will presumably be one tool to reduce disruptions and to
improve the system performance, especially the system capacity,
on the way towards an increasingly automated future. With rail-
way as a highly climate-friendly means of transportation, these
developments are necessary in order to reduce the world’s carbon
footprint by shifting more goods and passengers to rail.

On-board ADAS systems for trains need to monitor the train
environment in order to understand if an object is on the tracks
or approaching/leaving them and derive a suitable reaction for
the given situation. It is therefore indispensable to automatically
determine the track course in a certain, velocity-dependent distance

Fig. 1. Rail track detection result with the proposed framework. On the
left, the rails, on the right the derived center line. Depicted in green are the
outer rail edges of the ego-track, in blue those of the right neighboring rail
track and in magenta the ground truth.

from the train, the so-called ego-track. While incidents on the ego-
track might only be mitigated due to the long breaking distance of
the train, monitoring the neighboring tracks can be used to warn
other trains well ahead and thus to avoid accidents.

Calculating the track courses can partially be covered using a
high precision map and localizing the vehicle on it by fusing
satellite-, inertial- and odometry information with detected land-
marks. However, when assessing the risk imposed by detected
objects, deviations in lateral position and orientation can easily lead
to unnecessary breaking maneuvers. A vision-based track detection
can provide reliable information on the train’s lateral position and
orientation if the track is used as a landmark, and also allows
a direct first risk assessment. In order to evaluate the absolute
precision of the detector, an adequate metric is required that offers
unambiguous indicators, like real-world deviations in centimeters.

Until today, only a few rail detection algorithms have been
published. They mostly use segmentation networks or traditional
feature extraction approaches and they are typically limited to ego-
track detection. Although these papers usually use well established
detection metrics, the measurements are hard to interpret as they
are made in image-space only, e.g. [1].

In this work, we therefore propose a camera-based framework to
detect the ego-track and its neighboring tracks from RGB camera
images recorded at the train front (Figures 1 and 2). Based on a
thorough state-of-the-art review (Chapter II), we adopt PINet [2],
a CNN for lane-marking detection, for our task (Chapter III). The
underlying assumption is that both, lane and track detection tasks
share a similar structure because both rails and lane-markings usu-
ally come in pairs and visually stand out against their surroundings.
In order to obtain meaningful tracks from individual rails, they
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Fig. 2. Our proposed framework uses a modified version of PINet [2] to predict pixels along the rails. In an additional post-processing step our algorithm
then estimates the centerline for the ego-track and its first neighbouring tracks. Our proposed novel TCOM metric determines the centerline deviation from
ground truth and can be evaluated for different distances from the train front.

are post-processed using a clustering approach in the bird’s eye
view (BEV) which enables us to easily exploit the geometrical
constraints that rail tracks adhere to: Parallel rails with a fixed
distance between them. Our data and evaluation procedure is shown
in Section IV. To evaluate the performance in meaningful real-
world measurement units we propose two novel metrics as another
key contribution in this work: Rail Position Offset Metric (RPOM)
and Track Centerline Offset Metric (TCOM). Using also the BEV,
they allow calculating the absolute offset between a detected rail or
track centerline and the ground truth and thus enable an objective
and accurate evaluation (Chapter V). We conclude the paper with
an outlook on open challenges and future work.

II. PROBLEM STATEMENT AND RELATED WORK

In this section, we provide a short review of state-of-the-art
approaches for our application. For the remainder of this paper,
we refer to the term rail detection for identifying a single rail in
an image or data frame while track detection covers the task of
finding a complete track, i.e. two parallel rails which can be used
by one train. Given this definition, a valid output for track detection
is either lines along the edges of the rails of a track or the centerline
of a track defined as the virtual line in the middle of its two rails.
We distinguish between the ego-track used by an automated train
and neighboring tracks which could exist to both sides of it.

As rail track detection has not yet been extensively covered in the
literature, we also present state-of-the-art lane detection approaches
for automotive applications which are a technically similar field.
In both areas, traditional computer vision (CV) methods have
advantages from a safety perspective thanks to their explainability.
On the other hand, deep learning-based approaches usually perform
better but will introduce additional effort for homologation of
safety-critical systems such as trains. We conclude the chapter with
a discussion of related metrics and datasets.

In the literature, there are a few examples on camera-based rail
track detection which could be used for driver assistance systems.

A recent and comprehensive overview is given in [3] which also
covers further aspects as e.g. object detection in rail contexts. In
[4], track detection using dynamic programming is proposed. [5],
[6] use a recursive approach and a monofocal camera to detect
turnouts and to improve the localization of the train. Recently,
a photogrammetric approach has been presented in [7] which
fuses known map data with track estimates from the train. As
a similar approach, an inverse projection mapping can be used
for track detection from a train front camera performing the track
detection in a bird’s eye view and with geometric constraints [8],
[9], respectively.

Apart from train-mounted cameras, satellite and airborne im-
agery have been used for maintenance [10] [11] and inspection of
rail tracks [12]. Also, other modalities can be used, e.g. an adaptive
edge detection by a genetic algorithm for infra-red images proposed
in [13].

Next to classical CV methods, Deep Neural Network (DNN)
approaches have been developed for rail detection, e.g. segmenta-
tion approaches. Wang et al. [14] use semantic segmentation and
polygon fitting to detect especially the ego-track. They enhance the
well-known SegNet [15] by adding dilated cascade connections and
cascade downsampling. A similar approach to rail detection was
taken by Wang et al. in RailNet [1] who enhanced the ResNet
[16] feature extractor by including a pyramid aggregation scheme.
In a recent work, Yang et al. [17] combine rail detection and
train detection to propose an active safety system for railways.
However, state-of-the-art rail detection methods still focus a lot on
ego-track detection. To our knowledge, there are no approaches
aiming specifically at the detection of neighboring tracks.

While rail track detection is a rather young field of research,
lane detection approaches for automotive are technically similar and
have attracted more interest in the past, i.e. [18] and [19]. Respec-
tive DNN methods can be clustered into two categories: Semantic
segmentation networks and regression networks. Many researchers
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Fig. 3. Process of RPOM and TCOM calculation in BEV. The GT centerline is calculated in the same way as the centerline derived from the predictions.
The RCOM graph shows that one of the rail detections of the ego track drifts off, while the other stays close to the GT. For the TCOM this means that
the centerline calculation is stopped at 65m, where the offset between the rails starts getting too big to be physically possible.

have extended segmentation techniques for lane detection, i.e. [2],
[20]–[22], [22]–[27].

From the mentioned segmentation-based publications only [20],
[26], [27] are capable of detecting a variable number of lanes
which is important in the rail context with potentially multiple
parallel tracks. As [20] and [26] use binary classification, their
output requires furthermore heavy post-processing before it is
made parametric. Hence, also regression-based approaches have
been investigated to provide a scalable approach. A prominent
regression-based method are polynomial regression networks like
[28], [29]. In [29] Tabelini et al. proposed LaneATT [30] which
uses an anchor-based pooling mechanism for multi-scale feature
extraction. In order to detect a variable number of rails a regression-
based network was selected for this paper.

To our knowledge, the semantic segmentation offering dataset
RailSem19 [31] is the only publicly available railway dataset. It
offers many annotated object classes but does not focus specifically
on rail tracks. This might be why no distinct metrics are available
and why papers use indicators like Intersection over Union (IoU),
precision and recall on rail-pixel basis [1]. However, two aspects
make RailSem19 unsuitable for our use case: Firstly, the dataset
consists of videos recorded out of drivers’ cabins from all over
the world and is therefore missing external and internal camera
calibration information. Secondly, the rail labels are arbitrarily
thickened splines along the rails, so the precise locations of the
tracks’ rail edges are unknown. Both facts hinder measuring precise
absolute deviations.

For automotive lane detection, benchmarks like CVPR 2017
TuSimple [32] and CULane [22] have been introduced. Commonly,
the evaluation follows the principles from [22] where the lane
markings are evaluated calculating the IoU between arbitrarily
thickened lines of constant width (e.g. 30 pixels). This might be a
suitable metric for automotive applications but in not useful for a
train case were high precision even at long ranges is necessary, e.g.
to determine whether a pedestrian is too close to the tracks or not.
Additionally, when using detected tracks as landmarks to accurately
localize the ego train on a high-precision map, the 30-pixel width

for ground truth used in the evaluation introduces undesired bias.
As rail tracks always have the same width in contrast to lanes on

different roads, it appears also questionable to consider IoU errors
for estimating one single rail in the metric for a track as a whole. In
contrast to automotive applications, the individual rails can always
be extracted using the fixed track width and an accurate centerline.

Other metrics appear even less suitable for the rail context: While
a region of interest is obviously only a very rough form of ground
truth for a long and potentially curved object such as a rail track,
a segmentation mask also has flaws. It offers the benefit of an
easy pixel-wise accuracy computation but the exact position of a
rail track centerline does only slightly depend on its segmentation
mask. One or more additional pixels at the border of the mask may
influence its IoU score or accuracy value but usually have a very
limited effect on the centerline which is the actual geometric result
of interest. Additional difficulties are quantization issues and bias
introduced especially in the far field where a single mask pixel
would affect the IoU very little but attributes much more weight to
the centerline estimate than in areas close to the train. This problem
is similar for the CULane metric.

Overall, we conclude that a new evaluation scheme and new
metrics are needed for rail track detection. Our proposal is outlined
in Chapter IV.

III. PROPOSED TRACK DETECTION FRAMEWORK

The proposed rail detection framework uses the Point Instance
Network (PINet) [2] as its backbone. In its original form, PINet
makes use of keypoint estimation and instance segmentation ap-
proaches to detect pixels along lane markings in camera images.
For our framework we adopted and re-trained the network to detect
points on rails. Indeed, the network detects points on the outer edge
of a railhead to take advantage of the higher contrast as compared
to the inner edge, but for simplicity, we will use the terms rail and
outer rail edge interchangeably here.

The detected rail pixels are postprocessed to filter out false
positives and clustered into meaningful tracks using the geometrical
constraints of a rail network. The final output can be either points
along the outer rail edges or points along the centerline, in each case



Fig. 4. RPOM (right) and TCOM (left) plots with median, 0th and 95th percentile at every 5m from the train front. Within the first 50m, 95% of the
TCOM values are within 10 cm.

for 1-3 tracks: the ego-track and – if present – the first neighbouring
track on each side.

The resizing block of PINet [2] takes an RGB image of resolution
512× 256 px as input and compresses it to a feature map of size
64 × 32. The following prediction block consists of a number
of encoder-decoder blocks (hourglass modules) made up of three
types of bottleneck blocks, namely Down, Same and Up bottleneck
used for downsampling, feature aggregation and decoding: We
adopt these bottleneck blocks but add a dropout layer before
the last convolution layer (size=1, padding=0, stride=1) to reduce
overfitting issues and reduce the number of hourglass modules
from 4 to 2 to account for the yet limited size of our dataset.
We keep the original output branches for confidence, offset and
feature prediction.

Each branch has its own loss function, however in contrast to
the original PINet, the total loss Ltotal is the weighted sum of only
three loss components:

Ltotal = γe Lexist + γn Lnon-exist︸ ︷︷ ︸
=Lconfidence

+γo Loffset

+ γα LSISC + γβ LDISC︸ ︷︷ ︸
=Lfeature

+(((((γd Ldistillation ,
(1)

with γe, γn, γo, γf, γα, and γβ being the respective weight factors.
We remove the original Ldistillation, because its application for
teacher-student training is out of our scope. Lconfidence and Lfeature

are the original confidence and feature loss functions for which we
refer to [2], while we propose to alter the offset loss Loffset for our
application.

In order to account for the fact that in the camera perspective
an offset between a predicted rail pixel ˆ⃗c = (ĉx, ĉy) and a GT
rail pixel c⃗ = (cx, cy) generates a bigger error far from the train
than the same pixel offset in close distance, we apply a weighting
based on the rail pixel’s distance to the train front (Equation 2). It
is achieved by deploying a weight grid W of the same size as the
ground truth grid. The loss is applied to cells Ge containing GT

points and normalized using the number Ne of these cells:

Loffset =
1

Ne

 ∑
cx∈Ge

((cx − ĉx)wcx)
2 +

∑
cy∈Ge

(cy − ĉy)
2

 ,

wcx ∈ W =

[
2.53 ... 2.53

...
...

1.0 ... 1.0

]
32×64

.

(2)
Because the BEV transformation is linear, all columns of W are
set to be equal and increase linearly. We arbitrarily choose them
to increase from 1.0 to 2.53, resulting in a factor of 1.5 in 150m
longitudinal distance from the train front.

The output of PINet is a set of clustered points on the rails.
Using a flat-world assumption and an extrinsic sensor calibration,
we transform these points ˆ⃗ci into points ˆ⃗ci in a bird’s eye view
(BEV) at railhead level. Rails are extracted in the BEV by fitting a
cubic b-spline onto the predictions including outlier effect reduction
using a smoothing factor [33] that increases with the distance from
the train front.

For track extraction, the rails are sorted from left to right and
we associate right to left rails in order to form pairs. The pairing-
condition is that a potential right rail needs to have at least 30 points
in a distance close to the track width to their left counterparts. We
only allow for unambiguous assignments, otherwise the left rail is
discarded completely, leading to single false positive rails being
excluded from further processing.

Finally, the track center lines are estimated: For every predicted
point ˆ⃗cl on the left rail, a radius search using the known geometric
track constraints identifies all n predicted points on the right rail
R = [ˆ⃗cr,1 . . . ˆ⃗cr,n] and their connecting vectors ˆ⃗clˆ⃗cr,i. The vector
0.5 · ˆ⃗clˆ⃗cr,i forming the closest 90◦±2◦ angle with the rail-tangent
t⃗ĉl in ˆ⃗cl then determines the respective centerline point estimate
ˆ⃗a (Figure 3). The extracted tracks are assigned the labels “ego” /
“right” / “left” based on their lateral centerline position in BEV
close to the train.

IV. DATASET AND EVALUATION METRICS

For evaluation of our method, we use data obtained from
the aTL (advanced TrainLab) [34] which is a modified
SIEMENS/Bombardier series BR605 (ICE-TE) test train serving as
a platform for mounting synchronized sensors of four modalities
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Fig. 5. RPOM (right) and TCOM (left) graphs with median and 95th percentile offset values for different numbers of hourglass modules. Using two
hourglass modules shows the best performance.

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��

��

��

��

��

��

��

��

��

���

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

'LVWDQFH�IURP�7UDLQ�)URQW�>P@ 'LVWDQFH�IURP�7UDLQ�)URQW�>P@

2
II
VH
W�
>F
P
@

Fig. 6. RPOM (left) and TCOM values (right) for different offset loss configurations: The proposed weighted offset loss function with γ0 ≥ 1.0 tends to
be more precise and shows less variation. The black curves depict the baseline performance (two hourglass modules and original offset loss function) that
was determined in the first experiment (see Figure 5).

(RGB camera, IR camera, lidar and radar) which were intrinsically
and extrinsically calibrated.

The dataset contains ten different scenes from rail tracks
recorded in the area of Berlin, Germany, and shows suburban
and city railway environment. In total, it consists of 18,043 video
frames (≈ 30min), of which 80 % were used as training data and
20 % served as test and validation data.

In addition to railway-related objects like tracks, switches, tran-
sitions, passengers, poles, trains etc. a multitude of non-railway-
related objects in surrounded areas were recorded and annotated,
resulting in a realistic challenge for computer vision tasks in a
rail environment. The rail edges were annotated with centripetal
Catmull-Rom-Splines [35] and the track centerlines were derived
from those edges with the same method used in our track detection
postprocessor.

As stated in Section II, we found the existing metrics to be
insufficient for evaluating rail track detection using rail edges or
track center lines. Therefore, we come up with a new evaluation
framework including two novel metrics: The Rail Position Offset
Metric (RPOM), which measures the lateral offset of the detected
outer rail edges, and the Track Center line Offset Metric (TCOM)
that measures the lateral offset of the track center line. An important
advantage of those metrics is their output of a real world-coordinate
accuracy (e.g. in cm) at predefined longitudinal distances from the
train front which enables easy and meaningful statistical analyses

and interpretation. In other words, the metrics are suited to evaluate
rail track detection precision at all distances equally: Close to
and far from the train front. The absolute value also helps to
assess the system performance for high-precision landmark-based
localization.

The metrics are computed in the calibrated BEV (see Section
III) which constitutes an important cornerstone for the evaluation
framework. By mapping both, center lines / rails and ground truth
(GT) into the BEV, the deviations are simple to compute and
straightforward.

For a track jointly present in GT and predictions, we define
RPOM for the predicted rail point ˆ⃗c = (ĉx, ĉy) as the lateral offset
∆x to the ground truth point c⃗ = (cx, cy) (see Figure 3):

RPOM(cy) =|cx − ĉx|in BEV . (3)

With the BEV-inherent world coordinate metrics, the RPOM at any
given point directly translates into centimeters. Therefore it is easy
to compute statistics, e.g. variances.

TCOM is similar to RPOM but uses the offset between a ground
truth centerline point a⃗ = (ax, ay) and an estimated centerline point
ˆ⃗a = (âx, ây) of matching tracks:

TCOM(ay) =|ax − âx|in BEV . (4)

For analysis, RPOM and TCOM values are plotted over distance
from the train front (single-frame results in Figures 2 and 3). All



�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��

���

���

���

���

����

����

����

'LVWDQFH�IURP�7UDLQ�)URQW�>P@

�
�2
E
VH
UY
D
WL
R
Q
V

Fig. 7. Left: Plotting TCOM values for the ego-track in all frames of a video clip at distinct distances over time shows foresight and offset at a given
time. Thus it allows to identify challenging situations, e.g. between 5 and 15 s. Right: Analysis of the maximum ego-track detection distance in all frames
of the dataset by constructing a histogram of the farthest center line points that were calculated with TCOM.

results in Chapter V accumulate TCOM and RPOM values over the
full dataset and thus allow for a detailed statistical analysis (see
Figure 4). Analyzing a video clip for challenging situations can
be done easily by plotting framewise RPOM- or TCOM offsets at
given distances from the train front over time (see Figure 7). The
diagram reveals video-sections with high offsets and also sections
where only the first meters of a track where detected (then the
brighter lines indicating farther distances are missing).

From our experience, TCOM values are smoother and less
affected by outliers. This is based on the implicit averaging between
left and right rail which evens out small errors done in rail
detection. Both metrics together allow for a detailed analysis of
a track detection system as the statistics for individual rails and
final tracks can be assessed independently.

V. EXPERIMENTAL RESULTS

Due to low contrast, every image in our dataset is enhanced
using a CLAHE operation [36] to equalize the image histogram
before randomly applying the following augmentation methods
during training: Translation, rotation, flipping, change of intensity,
shadowing and adding of Gaussian noise. Subsequently, all images
are resized to the network input size,

Using experimentally determined hyperparameters, we trained
for 850 epochs with a batch size of 6 images per GPU. An Adam
optimizer, a cyclic learning rate scheduler with a learning rate ∈[
1e−9, 1e−5

]
, a weight decay of 4e−3 and a dropout rate of 0.5 for

all dropout layers are used in the experiments. The weight factors
of the different parts of the total loss function Ltotal (Equation (1))
are set to γe = 2.5, γn = 1.0, γo = 0.2, γα = 0.9 and
γβ = 0.5. We choose the confidence threshold for predicted rail
pixels as 0.5 and keep the distance threshold for distinguishing the
rail instances at 0.08 as in original PINet.

In two experiments we investigate the effects of the proposed
alterations: The reduced number of hourglass modules, and the
configuration of the improved offset loss function. The influence
of different numbers of houglass modules can be seen in Figure 5
showing the accumulated RPOM and TCOM values for the ego
track at every 5m from the train front. Over practically all
distances, the two-hourglass module configuration delivers the most
precise rail pixel positions. This is opposed to the results from the
original PINet paper, where datasets with similar sizes as compared
to ours performed best with three or four modules. We assume

that the limited variance of our dataset quickly leads to overfitting.
Figure 5 also supports our hypothesis that estimating a center line
from a pair of rails increases the precision as single-rail errors
cancel each other out.

The new offset loss function introduced in Equation (2) penalizes
lateral prediction imprecision harder with increasing distance from
the train front. Figure 6 shows the RPOM and TCOM results for
different offset loss functions and values of γo. Using the two
hourglass network configuration from the previous experiment as
the new baseline, the figure shows that the proposed weighted offset
loss function works as intended, improving precision at longer
ranges, as long as γo ≥ 1.0. For RPOM, γo = 2.5 is best at
long ranges. For TCOM however, γo = 1.0 shows the smallest
long-range offsets. We assume that this is caused by predictions
with γo = 2.5 tending to have an offset to the same side which is
not evened out.

Comparing RCOM and TCOM with standard metrics like IoU
(see Table I) we observe a lack of variation in the ego-track IoU
values. This clearly indicates that the one-dimensional metric is not
an adequate performance measure to judge the course and precision
of the detected track centerline.

Offset Loss Function Average IoU
(used γo) ego track left neighbour right neighbour

original (0.2) 0.806 0.776 0.540
weighted (0.2) 0.812 0.715 0.490
weighted (1.0) 0.829 0.764 0.481
weighted (2.5) 0.818 0.711 0.458

TABLE I
IOU FOR THE AREA BETWEEN THE RAILS, CALCULATED IN BEV.

Figure 7 shows further meaningful, yet easily generated statistics
from RPOM and TCOM. In the left graph, we analyze all frames
of a video clip in succession and plot the TCOM offsets (y-axis)
at certain distances from the train front over time (x-axis). We can
see center line detections up to 120m with ≤ 20 cm offset over
almost the complete course of time. This foresight only drops to
50m in the time window of 5 s to 20 s, where the ego track takes a
sharp bend. We see that entering the curve at 5 s leads to increased
offsets compared to the straight track in the remainder of the scene.

In the right graph of Figure 7 we see a histogram of the
maximum detection distance in the frames of the complete dataset.



The ego track detection distance is usually bigger than 5m and
only rarely greater than 120m. On the one hand this is due to
PINet’s difficulties to assign rail pixels at great distances to the
correct rails, but on the other hand our post-processing discards all
rail pixels outside the BEV image (i.e. farther than 150m) which
shortens the rail spline.

Figure 8 shows some more exemplary rail track detection results.

VI. CONCLUSION

We presented a framework for camera-based detection of mul-
tiple rail tracks and a consistent approach for its evaluation. We
showed that the well-known PINet lane detector can be adapted
to this task and trained it on our rail dataset. The improved offset
loss function enhances the precision of rail detections in farther
distances from the train front. Our simple post processing works,
but needs improvement at spline interpolation and edge cases like
rail track switches. Because existing detection metrics like IoU
using segmentation masks fail to allow an unambiguous evaluation
of the the track center line, we proposed the new comprehensive
RPOM and TCOM metrics which evaluate track detection results
in easily understandable real-world coordinates and deviations.
Those metrics should enable researchers not only to benchmark
rail track detection performance with clearly interpretable metrics,
but also to develop precise rail track detectors and localization
algorithms using the tracks as landmarks in high precision maps.
Future research should enhance our metrics to also work in non-flat
environments and investigate RPOM-like metrics in a loss function.
We will build on this work by publishing a standard rail dataset in
the future that will also include other sensor modalities.
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