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1 Executive summary 
Due to megatrends such as urbanization and an increased awareness for climate change, railway 
operators around the world have the urgent need to increase capacity, quality, and efficiency of rail 
operations. Driven by these megatrends, the railway sector is currently conducting one of its largest 
technology leaps in history, characterized by the introduction of a high degree of automation and 
various novel technologies in the rail system. As a basis for this, Deutsche Bahn and Siemens 
Mobility, within the sector initiative “Digital Rail for Germany”, are jointly investigating a key element of 
future rail operations – the SIL4 Data Center. 

The collaboration has been undertaken in order to gain synergies from different points of view, 
experiences, and expertise, such as in the specification of major high-level requirements for a SIL4 
Data Center including inputs from RCA/OCORA’s "White Paper on a Generic Safe Computing 
Platform for Railway Applications" (Version 1.01, December 2020), definitions by the EULYNX 
initiative, and already established standards for security and homologation. To assess the technical 
feasibility, an architectural design proposal has been created including a modularized approach 
towards a more flexible replacement of components within the system lifecycle, and the involvement 
of a multitude of different vendors, as well as a potential migration strategy. Furthermore, the 
collaboration seeks to describe how today's operational processes in rail operations will be impacted 
from a technical, financial and regulatory perspective. 

The detailed analysis of the top-level objectives from the RCA/OCORA White Paper and EULYNX 
mentioned above shows that the complexity of system integration and homologation will grow 
extremely for a modular separation of applications, middleware, and hardware compared to EULYNX 
and existing SIL4 infrastructure setups. This research report provides an initial analysis on whether 
benefits through increased modularity, evolvability, and flexibility outweigh a significant surge in effort 
and complexity. Also, the critical consequences of the objectives for homologation, e.g., the need for 
recertification in the event of system changes, will be pointed out. An additional objective for 
geographical redundancy has been defined within the requirements analysis. 

Based on high-level requirements, Deutsche Bahn and Siemens Mobility have developed a possible 
layered architectural design of a SIL4 Data Center. This specifically considers different application 
deployments over distributed data centers and different degrees of involvement of multiple vendors 
for one installation and is based on a common virtualization layer. This also includes an analysis of 
the dependencies between applications and the safety layer in order to achieve the best possible 
generic API design for modularity in the future, as envisioned by RCA/OCORA. As the SIL4 Data 
Center is a huge technological and conceptual leap, a potential migration strategy has been 
elaborated that is to ease the coexistence and operation of legacy systems next to RCA-compliant 
applications. Besides the engineering aspects, maintenance and update concepts which can be 
applied to a SIL4 Data Center are also described to achieve the highest possible availability of the 
overall system. Having multiple applications on one SIL4 Data Center, the aspects of operating 
applications with different safety integrity levels must be considered. Also concepts of geographical 
redundancy, including their potentials and challenges for additional availability and safety, are 
discussed. Ultimately, the report highlights how the SIL4 Data Center can be embedded into the 
cybersecurity architecture specified by the cybersecurity working group of the EU research project 
X2Rail-3. 

Integration and testing of the SIL4 Data Center and its applications are particularly challenging tasks, 
especially for a safety-relevant system with components from multiple vendors. The report provides a 
recommendation for an integration concept that differentiates between vertical integration of hardware 
and software and horizontal integration of different applications. The concept also considers the 
different roles and responsibilities for integration and testing. An overall integration and testing 
responsibility is relevant for the approval process. Whoever is taking over overall responsibility for the 
whole system and how a potential split of responsibilities between operator and multiple vendors can 
be achieved still needs to be defined, as envisioned by the RCA/OCORA objective. 

For both Deutsche Bahn and Siemens Mobility, it has been crucial not only to look at the technical 
implications of a SIL4 Data Center but also to develop an understanding for the overall changes 
triggered by this technological approach and how those affect the complete process chain throughout 
the system lifecycle. Therefore, this research report also includes an analysis of the impact of 
operational changes compared to current technological approaches, including a rough financial 
evaluation and a compilation of further aspects regarding the composition of the total cost of 
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ownership. The main finding is that the increased level of complexity will lead to substantial ramp-up 
costs, but the overall business case for the SIL4 Data Center approach along the full technology 
lifecycle appears positive. In addition, it is to be noted that some costs are currently difficult to 
evaluate, especially those related to multivendor integration. 

The lifecycle perspective also leads to an outline for a different maintenance strategy, as various 
lifecycles of the individual parts need to be considered when utilizing COTS components in a SIL4 
Data Center. Along with this aspect, there is also the assessment of different levels of combining and 
operating components from multiple vendors involved and the implications of such a setup. 

A key challenge in the data center approach is that also revolutionary technological approaches need 
to remain compliant with existing safety regulations, as it is imperative that the safe system design be 
certified by the authorities. Therefore, this research report includes an outline of relevant safety 
standards and how these must be applied in the context of homologation of a SIL4 Data Center and 
impacts of the application of safety standards on the overall system design and definition of interfaces 
are highlighted. It is important to minimize the set of requirements from safe application layers 
(SRACS), and to enable changes to non-safety-relevant software and hardware components without 
affecting the upper system layers. 

Throughout their collaboration, Deutsche Bahn and Siemens Mobility realized that certain aspects 
around the SIL4 Data Center concept have not been defined yet. This holds especially true for the 
independency between modular applications on the one side and the safety layer solutions on the 
other.  In this respect, it seems that overall integration and homologation costs may be higher than 
envisioned by RCA/OCORA. Additionally, the technical support for clear evidence of any influences 
between the different parts to enable the definition of clear responsibilities is currently unsolved. 
Another open point is the high degree of flexibility regarding multiple vendors of modular systems, 
which is in contradiction to the usual aim to define few generic system variants that can be eligible for 
type approval to be reused in multiple installations. In addition, it must be noted that cross-vendor 
integration of safety-relevant parts within an installation is still unsolved in today's setups. 

Detailed dependencies and interactions between different applications, especially from a performance 
and time behavior perspective, are currently not defined. Because of this, there are no specific 
requirements for the design of safety layers regarding the simultaneous execution of several 
applications. Moreover, it is important to point out that cloud-like approaches, e.g., dynamic resource 
management, directly affect the safety case of safety layers and cannot easily be fulfilled by non-
safety-relevant software for cloud infrastructures. 

Within the research collaboration of Deutsche Bahn and Siemens Mobility, the idea of a SIL4 Data 
Center has been pushed forward significantly. The objectives described in the RCA/OCORA White 
Paper have been refined and analyzed under the aspects of feasibility and practical implementation. 
Design alternatives, potential pitfalls, high effort drivers have also been identified. This research report 
will be the foundation for refining the SIL4 Data Center.  
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2 Introduction 

2.1 Background 

Less traffic, less congestion, less particulate matter – and more people and more goods on the rails: 
Driven by these trends the rail sector in Europe is currently conducting one of its largest technological 
leaps into the digital future. The sector initiative Digitale Schiene Deutschland is taking advantage of 
this opportunity and bringing future technologies into the rail system. This benefits not only 
passengers, but also the climate and Germany as a business location. And all this without having to 
construct a single new track. 

The foundation for this is being laid with the fundamental modernization and digitization of the 
infrastructure through the consistent introduction of digital control and safety technology. To achieve a 
far-reaching digitization of the railway system, DB is currently working with other European railways 
and industry partners within the Digitale Schiene Deutschland towards introducing, for example, the 
following: 

• AI-based real-time dispatching of rail operations throughout Germany 

• automation of rail operations up to what is known as Grade of Automation 4 (GoA4) 

• a new architecture for command, control and signaling (CCS) that enables train operation with 
minimal distance through an ETCS Level 3 moving block approach 

• fully automated incidence prevention, mitigation, and resolution.       

Overall, a significant improvement in capacity, and efficiency of the railway system will be achieved, 
all of which are requirements for more traffic on rails and strengthening of the railway as the climate 
friendly mode of transport. To implement the aforementioned points, it will not only be necessary to 
introduce various technologies such as artificial intelligence (AI), advanced sensing, high-precision 
localization, etc., into the rail sector. Furthermore, a novel computation and connectivity fundament 
will have to be established to support the applications that will drive future rail operations. 

As one key element of the fundament for future rail operations, Siemens Mobility (SMO) and 
Deutsche Bahn (DB) have jointly collaborated on the concept of a SIL4 Data Center for safety-critical 
trackside applications up to SIL4. Such applications would, for instance, include the further evolution 
of the European Train Control System (ETCS) and digital interlockings, e.g., in form of the Reference 
CCS Architecture (RCA), and additional safety-critical applications that will be introduced in the 
context of highly automated rail operations, such as automated incidence management. In this case, 
the term "SIL4 Data Center" corresponds to the concept of distributed computing platforms that are 
based on a modular separation of applications, middleware, and hardware for reasons that are 
detailed in the following.   

 

Figure 1 High deployment example for a SIL4 Data Center with geographical redundancy 

https://digitale-schiene-deutschland.de/en
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For illustration purposes, a possible (highly simplified and abstracted) exemplary deployment of a 
SIL4 Data Center setup is shown in the figure above. This consists of two pools of computer hardware 
in two distinct data centers (referred to as "Site 1" and "Site 2" here).  

The application examples shown in the figure include the following: 

• the possible future Advanced Protection System (APS, basically an architectural evolution of 
ETCS/RBC trackside functions), which, in the example, is split into subsystems (here called 
APS-X and APS-Y), and where one bundle of application instances (APS-X and APS-Y) 
jointly serve one region of object controllers (related to switches or axle counters), serving 
regions 1 and 2 

• applications Incidence Prevention Management (IPM) and Digital Register (DR), which both 
are in this example assumed to serve both regions 

• Automatic Train Operation (ATO), which is typically seen as non-safety-relevant (at least for 
GoA2 operation), but which may for reasons of synergy also be deployed on the same pools 
of computing nodes, albeit likely on a simplified and non-safe runtime environment (RTE) 

• a legacy installation with "Interlocking" functionality, serving region 3 

• a legacy installation with "RBC" functionality, serving region 3 

 

For maximum availability, the application instances are geo-redundantly deployed in both data center 
sites. In general, one can see in Figure 1 that multiple application instances may run on a common 
RTE instance, or have individual RTE instances, as elaborated in detail in section 4. 

This work has taken input from related activities of the railway initiatives RCA and OCORA on a Safe 
Computing Platform (for on-board and trackside equipment) OCORA-40-004-Gamma-CP-Whitepaper 
[3] but has gone further in depth towards possible specific implementations of SIL4 Data Centers for 
trackside CCS applications, and also complemented the work from RCA and OCORA via a detailed 
study of possible migration steps from today's application and platform approaches to the envisioned 
target computing architecture. 

 

2.2 High-level objectives of a Safe Computing Platform in SIL4 Data Center 
context 

Clearly, the key objectives for a SIL4 Data Center, being the focus of the collaboration among SMO 
and DB, are very much related to those of a generic Safe Computing Platform as covered in RCA and 
OCORA. For this reason, the following table lists the objectives as identified in RCA and OCORA-40-
004-Gamma-CP-Whitepaper [3] with a ranking and additional comments by DB and SMO, specifically 
with a focus on trackside SIL4 Data Centers and also incorporating findings from the collaboration. In 
section 3.1, these objectives are then evaluated from a technical feasibility perspective. 

No. in 
RCA 
/OCORA 

Objective 
OCORA-40-004-Gamma-CP-Whitepaper [3] 

Importance and comments by SMO and DB, 
specifically focused on trackside SIL4 Data 
Centers  

1 Meet safety and real-time requirements of 

CCS (and similar) railway applications 

The platform shall meet safety requirements of 
applications up to safety integrity level (SIL) 4, 

e.g., acc. to EN 50126, EN 50128 and EN 
50129, and support applications with real-time 
characteristics (e.g., overall processing cycles 

in the order of 10-100ms). 

Very high 

Clearly, it is a main requirement of the Safe Computing 
Platform to support applications up to SIL 4. 

From DB’s perspective, it is also important to stress that 
the Safe Computing Platform should not only focus on 
CCS needs, but also explicitly support additional safety-

relevant applications that will be introduced in the context 
of digitalized rail operations (e.g., digital map support, 
incidence management, etc.). 
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No. in 

RCA 
/OCORA 

Objective 

OCORA-40-004-Gamma-CP-Whitepaper [3] 

Importance and comments by SMO and DB, 

specifically focused on trackside SIL4 Data 
Centers  

2 Respect diverse lifecycles of business 
logic, runtime environment, and hardware.  

The platform shall be partitioned with respect to 
the different lifecycles of business logic, 
runtime environment, and hardware. The 

platform shall support fully independent 
lifecycle handling, i.e., with minimal 
dependencies. 

Very high 

This objective is clearly seen as a main paradigm for the 
design of a SIL4 Data Center (and Safe Computing 
Platform in general). 

From SMO’s perspective, it is also very important to 
consider the lifecycles of the legacy solutions when 
migrating into the SIL4 Data Center. 

3 Open market to new players 

The platform shall open the market to new, 
non-rail-oriented software and tooling 
companies. They shall be able to become 

involved in functional application development 
without providing their own platform safety 
mechanisms (e.g., related to safe 

communication, fault tolerance implementation, 
etc.). 

Very high 

This objective is seen as particularly important especially 
by DB. 

However, the processes need to be considered to 

ensure that different vendors' applications can be 
integrated and run together. 

SMO is in general in favor of any competition that takes 

place on a level playing field. 

4 Minimize total cost of ownership (TCO) 

The platform shall minimize the total cost of 
ownership, i.e., the overall lifecycle cost. 

Very high 

A minimization of the TCO is clearly essential for the 
entire rail sector. 

From SMO’s perspective, it is important to stress, 
however, that it cannot be taken for granted that, e.g., 
modularity based on standardized interfaces inherently 

leads to a reduction of the TCO, particularly considering 
integration efforts – this has to be evaluated in detail and 
the right level of modularity and vendor multiplicity has to 

be found. 

5 Vendor independence 

Different vendors shall be able to provide 
functional applications, computing platforms 

and development tools, respectively, without a 
vendor lock-in. It shall be possible to purchase 
hardware directly from different vendors 

throughout the lifespan of the software. The 
platform shall build on existing HW/SW 
solutions, stimulating competition among 
vendors and allowing them to shine with their 

specific expertise and distinctive solution 
features. 

Very high 

9 Facilitation of application development 

The platform shall use an open, well-

documented application model and 
programming interface, facilitating that third 
parties develop applications. 

Very high 

Especially from DB’s perspective, this point is seen as 

rather essential, also because digitalized rail operations 
will require the introduction of new safety-critical 
applications (see above). 

It is important to stress that the stated application model 
and programming interface must be standardized. 

10 Modularity 

The platform shall allow for a modular safety 
certification process, using pre-certified 

components leading to a dramatically simplified 
and shortened full system certification process. 
An evolution or update of the platform shall not 

Very high 

A certain degree of modularity is, of course, necessary to 
accommodate the afore-mentioned diverse life cycles of 

application, middleware, and hardware. 
 
From SMO’s perspective, it is nevertheless essential to 

determine the right degree of modularity considering the 
associated integration complexity as well. 
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No. in 

RCA 
/OCORA 

Objective 

OCORA-40-004-Gamma-CP-Whitepaper [3] 

Importance and comments by SMO and DB, 

specifically focused on trackside SIL4 Data 
Centers  

require a new E2E homologation of application 
and platform, as detailed in Section 7. 

11 Encapsulated, transparent fault tolerance 

mechanism 

The platform shall transparently encapsulate 
the safety and fault tolerance mechanisms. 

Vendors may offer different (new) approaches 
to safety and fault tolerance as they become 
available on the market – solution agnostic and 

future-proof. 

Very high 

 

From the perspective of SMO and DB, an encapsulated, 
transparent fault tolerance mechanism is actually not an 

objective in itself, but rather a prerequisite to achieve the 
aforementioned objective of modular separation of 
applications, middleware, and hardware. 

7 Migratable and portable business logic  

The business logic is considered a significant 
system asset, being the component with the 
longest lifetime. It must hence be portable to 

different computing platform evolutions. We 
here further differentiate: 

• Migratability for legacy applications: It 

should be decently easy to migrate 
legacy applications to the new platform. 

• Portability for new applications: 
Applications running on the platform 

should be portable to any other vendor’s 

or evolved version of the platform. 

High 

From the perspective of SMO and DB, it is rather 
straightforward to expect that by modularly separating 
the application, middleware, and hardware, applications 

should be portable from one platform to another (though 
it is understood that this will always come with some 
integration effort). 

What appears also important and has hence seen 
special emphasis in the collaboration among SMO and 
DB, is to provide a migration path from legacy solutions 

(both applications and platform approaches) into the 
same common data center. To that end, the common 
basic requirements for the porting of legacy solutions 

onto the same virtual computing nodes need to be 
defined. 

15 Support for running multiple applications 
(also with different SIL levels) on one 

physical platform 

It shall be possible to run multiple applications, 
possibly with different SIL levels, on a single 

physical platform to reduce cost, space, power 
dissipation, etc., and simplify certification, 
maintenance, system evolution, etc. 

High 
 

 

For data center deployments, which have been in the 
focus of the collaboration among SMO and DB, one may 

argue that mixed SIL support is not that critical as for on-
board installations, as one could afford to have platform 
realizations that are focused on fewer (or one) 

applications. 

However, it is important to stress that each safety 
concept of each solution for a safety layer shall allow that 

any other software (with any SIL level) can run on the 
same physical platform. Hence, the platform should 
inherently always support mixed SIL. 

14 Centralization 

The platform shall allow to centralize 
applications physically in a safe data center to 
simplify lifecycle management, reduce TCO by 

means of simplified, optimized operations, and 
benefit from increased availability and 
optimized resource usage. 

High 

Centralization is seen as paramount by DB, as it has a 
strong impact on TCO and OPEX reduction, see also 
section 6. 

12 Scalability 

The platform shall be highly scalable, i.e., it 

should by design be able to support an 
arbitrary number of applications and arbitrary 
number of compute nodes 

High 

From the perspective of SMO and DB, scalability and 

centralization are strongly related to each other, i.e., 
scalability (particularly in the number of computing 
resources and the number of applications supported by 

one platform) is a prerequisite toward centralization. 
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No. in 

RCA 
/OCORA 

Objective 

OCORA-40-004-Gamma-CP-Whitepaper [3] 

Importance and comments by SMO and DB, 

specifically focused on trackside SIL4 Data 
Centers  

13 Flexible usage of compute resources 

The platform shall enable a flexible mapping of 

business logic to compute resources (e.g., 
such that the platform can be expanded while 
applications are running, and that business 

logic can be re-mapped when compute nodes 
fail). It shall be able to leverage advances in 
computing technology (i.e., when better 

compute nodes are available, it shall be 
possible to assign more instances of business 
logic to the compute nodes). 

High 

A flexible usage of computing resources is seen as 

important by DB, particularly for the following use cases: 

• It shall be possible to change the association of 
application and RTE instances to computing nodes 

during runtime, e.g., to perform planned hardware 
maintenance or replace/upgrade hardware 
computing nodes, involving manual 

reconfiguration. 

• The platform shall be able to automatically 
respond to failures in hardware, e.g., by creating a 
new replica of an affected application (and a new 

RTE instance) on a spare hardware computing 
node. This must happen sufficiently fast to prevent 
an application from running in an undetermined 

mode for too long (e.g., 2oo2). 

From SMO’s perspective, the system complexity and 

cost to address these objectives can likely be strongly 
reduced if the need for manual intervention is accepted 
in both cases. It is also noted that the second use case 

above may be addressed via local redundancy or 
geographical redundancy. 

New Native support of geographical redundancy 

The platform shall support that the instances of 
individual application functions are 

geographically distributed for the purpose of 
highest availability and resilience, especially in 
the context of centralization. 

High 

This objective was not listed in the OCORA-40-013-
Gamma-CP-Requirements [4] but identified and added in 

the context of the collaboration among SMO and DB.  

It shall be noted that it will only be supported among 
geographically distributed RTEs from the same vendor. 

8 System evolvability 

The platform shall be open to extensions (in the 
sense of additional system services that are 
added over time, e.g., related to FRMCS). 

Adding new functionalities shall be possible 
with minimal to no changes to existing 
applications (though these may naturally not be 

able to leverage the new functionalities). 

High 

System evolvability is obviously an important objective, 
but it is assumed that this may be achieved rather easily 
through a suitable system design. 

6 Industrial readiness 

It shall be possible to procure a platform as off-
the-shelf solution supported by an open and 
dynamic market. The solutions shall be mature 

(e.g., reliability proven in field) and backed by 
effective acceptance and integrated logistical 
support (e.g., maintenance service, tooling, 

availability of spare parts). 

Modest 

From the perspective of SMO and DB, there is a certain 
risk attached to this requirement: Naturally, the 
introduction of a safe computing platform with a clear 

separation between applications, middleware, and 
hardware is a major technology leap for the rail sector, 
and this will clearly require some years of technological 

development and prototyping. If too much emphasis is 
now placed on having "mature" solutions available, there 
is a risk of compromising the overall vision.  
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2.3 Expected benefits of the envisioned SIL4 Data Center 

In summary, SMO and DB expect the following benefits from the SIL4 Data Center concept 
investigated in the project: 

• It shall provide a future-proof basis for the application needs of future safety-critical railway 
applications, in particular allowing to decouple the different lifecycles of applications, 
middleware, and hardware (also allowing for better obsolescence management) and to 
maximally utilize commercial-off-the-shelf (COTS) components and leverage the latest trends 
in the IT sector, for instance regarding virtualization. 

• It shall allow for a higher degree of centralization of application functionality, in order to save 
on the number of data centers needed for future rail operation, and to consequently save 
CAPEX and OPEX. 

• It shall provide the means for geographical redundancy that enable higher availability of 
railway applications overall. 

• Altogether, it shall provide a well-reduced total cost of ownership for the data center 
infrastructure for future railway operations. 

 

For the abovementioned expected benefits of the SIL4 Data Center concept, an initial rough 
quantitative cost analysis has been conducted in the collaboration, as described in section 6.1. 

2.4 SMO motivation to collaborate on the SIL4 Data Center 

For SMO it is of tremendous importance to collaborate on concepts for the future of rail transportation. 
This holds particularly true in the case of a potential architecture for safe rail applications. As a 
leading innovator of the industry, it has been the clear motivation of SMO to collaborate on the SIL4 
Data Center to align the own view with that from DB, specifically regarding the following: 

• technical overall architecture based on the SMO experience in the context of defining such an 
architecture for a SIL4 Data Center and developing such a needed software-based safety 
platform as runtime environment 

• identifying affected cross functionalities and corresponding interfaces to be defined as 
standard for an overall data center solution with different vendors involved 

• identifying the affected interfaces which need to be defined as standard for an overall data 
center solution with different vendors involved 

• identifying needed changes and open points in the process of homologation for a 
system/installation consisting of modular parts supplied by different vendors 

• identifying needed changes and open points in the process of integration of a 
system/installation consisting of modular parts supplied by different vendors 

• identifying required changes and open points throughout the complete lifecycle of a SIL4 Data 
Center and how operational processes are impacted 

 

In the context of this alignment, a particular emphasis has been placed on the following: 

• the relevant requirements for basic migration of any legacy solution into a common SIL4 Data 
Center 

• the development of new applications (e.g., as defined by RCA) 

2.5 DB motivation to collaborate on the SIL4 Data Center 

While for DB the necessity and pursuit of a safe computing platform approach with a modular 
separation of application, middleware, and hardware is unquestionable, it is clear that this bears 
substantial challenges. It is hence essential for DB to collaborate with suppliers such as SMO at an 
early conceptual stage in order to: 

• determine if there are any potential showstoppers regarding the vision of the railways 

• obtain an early understanding of which requirements are associated to which effort and cost 
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• see how the safe computing platform approach can possibly be adjusted such as to 
maximally leverage standardized developments of suppliers 

• develop migration strategies from today's platform approaches to the target architecture 

 

While DB sees a strong merit in defining a common high-level safe computing platform approach for 
both on-board and data center deployments, it has been important for DB to focus the project on the 
SIL4 Data Center to go further into detail into particular requirements and challenges, and 
consequently also different implementation approaches, related to data center deployments. 
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3 Objective evaluation and technical requirements 
In this chapter, some terms are introduced, that will be explained later in section 4. They are also 
briefly defined in Terms and Abbreviations, see section 10.1. 

3.1 Evaluation of the high-level objectives from RCA/OCORA 

In this section, the high-level objectives from RCA and OCORA, as described before, are evaluated 
from a technical perspective. 

3.1.1 Evaluation of objective No. 1 – Meet safety and real-time requirements 

Objective recapped: The platform shall meet safety requirements of applications up to safety integrity 
level (SIL) 4, e.g., acc. to EN 50126, EN 50128 and EN 50129, and support applications with real-time 
characteristics (e.g., overall processing cycles in the order of 10-100 ms). 

This objective appears realizable from a basic technical view. For technical details regarding the RTE, 
see section 4.10. 

Specific technical challenges regarding time behavior are: 

• Replica cycle time 
 For the synchronicity of the application replicas running on different computing nodes jittering 
effects and network latency times (especially in huge network configurations in case of 
geographical redundancy) need to be considered. By this cycle times and reaction times in 
small ranges as e.g., 10ms are not possible. For this see also section 4.1.3. 

• Application processing time 
These processing cycles significantly determine the overall processing time of a sequence of 
application invocations. As within a replica, the communication can be direct (unvoted); this 
can hence be improved when these applications are bundled within a replica so that the 
overall application processing time is (mostly) only depending once on the processing cycle.  

• Application reaction time 
The minimum possible reaction time of an individual application replica depends on the 
named cycle time. 
Detailed information regarding the time behavior of an RCA application (APS*) and especially 
the time-relevant criteria for inter-application communication is not available today. 
So this topic cannot be evaluated in deeper detail. Therefore, a target corridor for the time 
behavior of an RCA application needs to be defined. 

3.1.2 Evaluation of objective No. 2 – Respect diverse lifecycles 

Objective recapped: The platform shall be partitioned with respect to the different lifecycles of 
business logic, runtime environment, and hardware. The platform shall support fully independent 
lifecycle handling, i.e., with minimal dependencies. 

The desired support of diverse lifecycles can be achieved by strictly considering the following: 

• a defined system architecture with defined interfaces between all involved parts (COTS 
hardware, virtualization, RTE, application) considering the individual lifecycle aspects  

• defined processes for the overall integration and validation of changed parts within the 
installation (e.g., new COTS hardware, IT security patches, new engineering data, new 
application software, etc.) 

 

The architecture and processes must be elaborated and fixed before any device or system will be 
commissioned and put into service. 

Specifically, for the RTE, the requirement “separation of the safety layer from the non-safety-relevant 
parts” is proposed to handle diverse lifecycles in the context of flexible maintenance: 
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• short lifecycles for non-SIL software of the RTE, especially for the IT security mechanism (to 
install patches in short time periods) 

• longer lifecycles for the safety-relevant parts of the RTE as the safety layer and the safety-
relevant applications 

3.1.3 Evaluation of objective No. 3 – Open market to new players 

Objective recapped: The platform shall open the market to new, non-rail-oriented software and tooling 
companies. They shall be able to become involved in functional application development without 
providing their own platform safety mechanisms (e.g., related to safe communication, fault tolerance 
implementation, etc.). 

One key point to stress in this respect is that the RTE only ensures that applications are running 
safely on the COTS hardware – the safety of the implemented functionality of the application itself is 
irrelevant to the RTE. For the development of safety-relevant applications, new application vendors 
therefore need the know-how and competence regarding the standards in any case, e.g., CENELEC, 
even if they do not need to bother about platform aspects such as composite fail-safety, etc.  

In addition, new application vendors must also provide the safety case for an application running on 
an RTE. Not only will it cover the safety aspect of the application’s own functionality, but also the part 
of integrating the application on the RTE and validating the fulfillment of the SRACs provided by the 
RTE. This requires a separate certification or even an approval process. 

Hence, any new application vendor will, of course, have to consider if its own business case is still 
positive, especially given the end-to-end integration and certification effort that this player would have 
to bear. 

The situation may be different for novel safety platform vendors from outside the rail sector. Naturally, 
they would have to acquire the know-how of developing CENELEC-conformant platforms but in this 
case may leverage experience from providing platform solutions for safety-critical applications in the 
automotive and aviation fields, and they would not have to bear the end-to-end integration and 
certification effort. 

3.1.4 Evaluation of objective No. 4 – Minimize total cost of ownership 

Objective recapped: The platform shall minimize the total cost of ownership, i.e., the overall lifecycle 
cost. 

For the "total" view of the cost situation, it is necessary to distinguish between different aspects: 

• Centralized COTS-based data center 

• operational benefits 

• development costs for RTEs and applications  

• integration costs  

• new system concepts that need major redevelopment (e.g., APS*) 

• project timelines 

 

The complexity and dependencies to integrate multiple applications on several RTEs with vendor 
multiplicity will be significantly higher than today in EULYNX. This must be taken into account for the 
business case, and it is hard to evaluate at this early stage if the desired reduction of the total cost of 
ownership (TCO) can be achieved. 

Besides the obvious development efforts, there will be a significant impact on the overall processes 
regarding development, assessment, homologation, rollout (planning, procurement, installation, and 
maintenance), and integration including the related test and tooling environment. The respective 
change process to set up the necessary environment will require high priority and attention to ensure 
positive outcomes of the SIL4 Data Center architecture over its lifetime. 

In section 6, the business aspects will be discussed in more detail. 
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3.1.5 Evaluation of objective No. 5 – Vendor independence 

Objective recapped: Different vendors shall be able to provide functional applications, computing 
platforms and development tools, respectively, without a vendor lock-in. It shall be possible to 
purchase hardware directly from different vendors throughout the lifespan of the software. The 
platform shall build on existing HW/SW solutions, stimulating competition among vendors and 
allowing them to shine with their specific expertise and distinctive solution features. 

The modular architecture of the data center with standardized interfaces enables the involvement of 
several vendors. For detailed information regarding vendor multiplicity and vendor independence, see 
section 6.4. 

3.1.6 Evaluation of objective No. 6 – industrial readiness 

Objective recapped: It shall be possible to procure a platform as off-the-shelf solution supported by an 
open and dynamic market. The solutions shall be mature (e.g., reliability proven in field) and backed 
by effective acceptance and integrated logistical support (e.g., maintenance service, tooling, 
availability of spare parts). 

The hardware components of the generic computing platform can be commercial-off-the-shelf 
solutions, due to a huge amount of other use cases in other domains using the same industrial COTS 
hardware technology. On the other hand, RTEs and also applications for safety-relevant rail 
applications as “off-the-shelf solution supported by an open and dynamic market” may be more 
challenging.  

The knowledge, competence and experience which is needed to provide such an RTE for SIL4 
applications running on COTS hardware is only available in a few companies. Even with standardized 
interfaces of an RTE, the RTE solutions themselves will even in the future be a very "domain-specific" 
topic. Additionally, the market for installations of such RTE solutions is not comparable to other 
industrial use cases (with an exponentially higher number of installed solutions). Therefore, it will not 
be possible to get in a "commercial-off-the-shelf" situation together with industrial readiness of those 
products. 

3.1.7 Evaluation of objective No. 7 – Migratable and portable business logic 

Objective recapped: The business logic is considered a significant system asset, being the 
component with the longest lifetime. It must hence be portable to different computing platform 
evolutions. We here further differentiate: 

• Migratability for legacy applications: It should be decently easy to migrate legacy applications to 
the new platform. 

• Portability for new applications: Applications running on the platform should be portable to any 
other vendor’s or evolved version of the platform. 

The business logic is considered as a significant system asset because it is the component with the 
longest lifetime. 

It must hence be portable to future and/or different computing platform evolutions. 

We further differentiate between: 

3.1.7.1 Migratability for legacy solutions 

To migrate an existing legacy application onto the same computing nodes as an RCA installation, the 
legacy solution (= legacy application + legacy safety layer) needs to be adapted specifically to fulfill 
the basic common requirements for running a legacy installation within the same data center as RCA 
installations. 
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To that end, it is important to define the standardized interfaces and common requirements from the 
view of common data center handling to make even legacy solutions behave comparably. 

For possible migration concepts of legacy applications, see section 4.6. 

3.1.7.2 Portability for new applications 

An application which is newly developed based on one specific RTE solution depends on this 
RTE solution regarding the following: 

• the SRACS of the specific RTE solution 

• the development tools (T3 tools for safety measures required by the specific RTE solution) 

• the test environment for vertical integration of the application running on the specific RTE 

• the application-related configuration data required by the specific RTE solution 

 

All these aspects are basic conditions for application validation. 

To that end, the porting of an application from RTE solution 1 to RTE solution 2 will require a non-
trivial effort in terms of application adaptation, integration, and validation. 

For details regarding the API of an RTE, see section 4.5. 

3.1.8 Evaluation of objective No. 8 – System evolvability 

Objective recapped: The platform shall be open to extensions (in the sense of additional system 
services that are added over time, e.g., related to FRMCS). Adding new functionalities shall be 
possible with minimal to no changes to existing applications (though these may naturally not be able 
to leverage the new functionalities). 

Regarding "openness to extensions", one should differentiate whether the extensions relate to safety-
relevant functionality or not: 

• Safety-relevant extensions (e.g., new safe communication protocols) are likely tightly bound 
to the RTE and its internal interfaces. "Openness" can here be reflected in the RTE 
architecture, e.g., regarding a suitable abstraction between communication protocols and 
other RTE functions but can of course only be leveraged by the RTE vendor, who would have 
to provide each extension themselves. "Openness" beyond vendors would, at least for safety-
related functions, require the publication of the complete internal architecture of the RTE, 
which is naturally undesirable. 

• Non-safety-relevant extensions (e.g., FRMCS protocols and services) can likely be 
implemented separately from the RTE and can hence evolve independently from the RTE. 

3.1.9 Evaluation of objective No. 9 – Facilitation of application development 

Objective recapped: The platform shall use an open, well-documented application model and 
programming interface, facilitating that third parties develop applications. 

"Open and well-documented" does not mean "standardized" per se. 

For the benefit of "harmonized tool chains for application development (for all RTE solutions in the 
same way)", the requirements for such tool chains need to be provided and clearly defined as a 
standard. 

Otherwise, each RTE vendor will define and use their own solutions. This might be well-documented 
but will not become a standard. 

Such RTE solution-specific tool chains would not be an obstacle for enabling third parties in 
developing applications, but the same application would have to be developed in different ways for 
the different RTE solutions. 
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It is hence recommended that tool chains for application development are standardized to a 
reasonable extent (see also section 6.5), specifically considering the large range of application needs 
that should be supported by such a standard. 

3.1.10 Evaluation of objective No. 10 – Modularity 

Objective recapped: The platform shall allow for a modular safety certification process, using pre-
certified components leading to a dramatically simplified and shortened full system certification 
process. An evolution or update of the platform shall not require a new E2E homologation of 
application and platform, as detailed in Section 7. 

The "modular safety certification process" itself is well known and established but will get very 
challenging when considering the question "who takes over the responsibility for the overall system" 
(also considering the integration of multiple application subsystems into an overall system, not only 
the integration of one application onto the computing platform). 

Also, the complexity does not come from modularization, but from the different parties and roles 
involved in the integration and certification process: 

• The split of a safety-relevant system into small pieces delivered by different parties leads to a 
split in safety responsibility with a missing definition of the overall responsibility for integration 
and safety. 

• Each interface between safety-relevant parts needs to be integrated for safety certification.  

• The SRACS of each individual application must be handled with an overall view, even if there 
is no definition of the overall responsibility for safety. 

• RTE-specific SRACS of different RTE solutions must be handled by the safety applications 
(running on the RTE). 

 

The split of a huge system into small pieces leads to the delivery of small pieces for which the overall 
responsibility for integration must be defined. Nevertheless, the complete system needs to fulfill the 
requirements for safety certification (e.g., EBA Bund Anlage 17 [5]).  

The experience with EULYNX shows the unsolved situation for the overall certification of such a 
system provided by modular pieces (interlocking logic/object controllers) by different vendors.  
This unsolved situation with the missing "cross-vendor responsibility" today shows the complexity 
even in a relatively simple modularization as defined by EULYNX for splitting a system into two types 
of subsystems (interlocking logic and object controllers). 

The complexity of integration and certification for the modular approach of an RCA-based architecture 
is exponentially higher than the current situation in EULYNX. 

3.1.11 Evaluation of objective No. 11 – Encapsulated, transparent fault tolerance mechanism. 

Objective recapped: The platform shall transparently encapsulate the safety and fault tolerance 
mechanisms. Vendors may offer different (new) approaches to safety and fault tolerance as they 
become available on the market – solution agnostic and future-proof. 

The basic safety principles (hardware separation, diversity, redundancy, voting) are established for 
decades and used/realized in different combinations and variants by all rail companies. In this 
context, it is seen as unlikely that entirely novel fault tolerance approaches will be introduced. 

It is important to stress that the specific details of such safety approaches will not “become available 
on the market”, because of the following reasons: 

• It is “core knowledge” of the inventor of the RTE solution (and very often protected by 
patents), that is treated as confidential know how. 

• It is a core part of the safety certification, and therefore cannot be easily exchanged. 
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Overall, it is regarded as possible that the platform transparently encapsulates the safety and fault 
tolerance mechanisms, and this would also allow that the detailed mechanisms remain proprietary to 
the RTE vendor.  

3.1.12 Evaluation of objective No. 12 – Scalability 

Objective recapped: The platform shall be highly scalable, i.e., it should by design be able to support 
an arbitrary number of applications and arbitrary number of compute nodes. 

Scalability can be distinguished in different steps: 

• static: foreseen in the architectural design (e.g., avoiding fixed limits), but scaling up needs 
new integration and validation 

• dynamic: possible scalability at runtime, e.g., based on the current processing or memory 
load 

 

The static scalability that avoids fixed limits can be fulfilled. From a very simple point of view, each 
application is running (in replicas) on its own RTE and the amount of RTEs required for an installation 
depends on the number of applications. 

The most important technical requirements to run "an arbitrary number of applications" on the RTE 
will include aspects about: 

• time-critical dependencies between different applications belonging to one installation 

• bundling of different applications within the same replica 

• performance-relevant quantity amounts (number of incoming/outgoing messages per 
application cycle), maximum allowed reaction time of each application 

 

This input is not yet defined in detail in the current RCA stage. 

The dynamic scalability at runtime is discussed in more detail in section 3.1.13. 

3.1.13 Evaluation of objective No. 13 – Flexible usage of compute resources 

Objective recapped: The platform shall enable a flexible mapping of business logic to compute 
resources (e.g., such that the platform can be expanded while applications are running, and that 
business logic can be re-mapped when compute nodes fail). It shall be able to leverage advances in 
computing technology (i.e., when better compute nodes are available, it shall be possible to assign 
more instances of business logic to the compute nodes).  

The usage of separate compute resources (e.g., three separate hardware computing nodes for the 
2oo3 principle) is a basic rule for safety argumentation in safety layers. 

So far, the individual parts of a safety layer are mapped to the used hardware computing resource in 
a static way, e.g., by defined configuration data for the safety layer.  

This configuration data is part of the validation of the system and cannot be changed without re-
validating this data. 

In this way, “static” does not mean “inflexible” – the static configuration can naturally be changed and 
re-validated.  

This means that flexibility is provided, but in a static way, and it is not changed during the runtime of 
the system. 

For a “dynamic flexibility during runtime” in the usage of compute resources, the following is 
necessary: 

• The responsibility for fulfillment of the safety conditions (e.g., safety layer is running as 2oo3 
on three separate hardware computing elements) must be defined. 
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• The responsibility for fulfillment of the availability conditions (e.g., new computing resources 
shall provide the needed CPU power, performance, and time behavior for the needed 
workload) must be defined. 

• The responsibility for the fulfillments of installation rules from the view of installation 
consistency must be defined (e.g., installation of the correct parts of safety layer and 
application onto the new computing resources used). 

• The network infrastructure must be considered to enable dynamically added new computing 
resources to communicate to connected systems. To that end, network components such as 
switches/routers must be reconfigured. 

 

Such a dynamic reconfiguration or orchestration of computing resources would fall within the 
responsibility of the system's virtualization layer and be part of the safety case. On the other hand, the 
virtualization layer should not belong to the safety-relevant part due to it is complexity and flexibility in 
use. 

To automatically solve such a dynamic flexibility during runtime of a safety-related system by the 
computing platform itself is not easy to achieve in today’s view due to safety- and availability- related 
aspects which need to be reliably met for SIL4. For this, see also section 8.8. 

3.1.14 Evaluation of objective No. 14 – Centralization 

Objective recapped: The platform shall allow to centralize applications physically in a safe data center 
to simplify lifecycle management, reduce TCO by means of simplified, optimized operations, and 
benefit from increased availability and optimized resource usage. 

Centralization does not directly depend on the usage of a new RTE and COTS-based hardware, and 
in principle the centralization of SIL4 logics is already possible today with the EULYNX architecture. 

An additional benefit of centralization is the "unification" of the SIL4 products, which means they run 
together within a centralized SIL4 Data Center on the same standardized COTS hardware. 

On the other hand, a failure of one data center would have an unacceptably high impact. Therefore, 
centralization inherently imposes the need to have geographically distributed, redundant data centers. 

To gain this benefit of "unification", it is important to: 

• define a common system architecture with standardized interfaces between all involved parts 
(rail products and infrastructure parts as IT security, installation/update, and diagnostics) 

• define the parts that can be commonly used as a basic layer for all applications and run on 
the same hardware. These are e.g., virtualization and load operating system (Load OS). 

• define the standardized infrastructure elements for IT security, installation/update, and 
diagnostics 

For details, see section 4. 

3.1.15 Evaluation of objective No. 15 – Support for running multiple applications 

Objective recapped: It shall be possible to run multiple applications, possibly with different SIL levels, 
on a single physical platform to reduce cost, space, power dissipation, etc., and simplify certification, 
maintenance, system evolution, etc. 

There are three different situations to be distinguished: 

• multiple applications with the same SIL level (SIL4 only): Each application runs either on one 
common RTE instance, or on their own, separate RTE instances. 

• multiple applications with different SIL levels (SIL4 + less than SIL4): Applications with 
different SIL levels should run on separate RTE instances. The SIL level of the RTE instance 
could be adjusted to the SIL level of the respective application. 
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• mixture of SIL4 and non-SIL applications: The non-SIL application can run without any RTE, 
while the SIL4 application runs strictly separated on their RTE. 

 

The safety concept of each solution shall completely cover all aspects to achieve the necessary SIL 
level in their own responsibility for their own scope, independently of any other software that runs on 
the same hardware. 

This also implies that non-SIL applications that shall run on an RTE will have extensive additional 
development (if practicable at all) and validation effort because they also need to fulfill the safety 
requirements imposed by the safety layers. 

This topic will be further elaborated in section 7. 

3.1.16 Evaluation of objective No. "New" – Native support of geographical redundancy 

Objective recapped: The platform shall support that the instances of individual application functions 
are geographically distributed for the purpose of highest availability and resilience. 

Geographical redundancy supports the centralization on fewer data centers while fulfilling availability 
constraints even in catastrophic situations (e.g., flooding, earthquakes). 

The basic redundancy concept for "geographical redundancy" (by distributing the computing nodes 
involved onto different geographical sites) can be achieved by an RTE or by a legacy safety layer. 

Further information can be found in section 4.11.7.Fehler! Verweisquelle konnte nicht gefunden 
werden. 

3.2 EULYNX-related requirements 

In this section, the specific requirements of the EULYNX project relevant for a data center are 
introduced. First, it should be mentioned that the EULYNX requirements focus on the behavior, the 
interfaces, and the non-functional requirements of the subsystems.  

3.2.1 Communication interfaces SCI*, SDI*, and SMI* 

The communication interfaces SCI*, SDI*, and SMI* as defined by EULYNX shall be additionally 
supported by the RTEs and by the legacy solutions running in the data center.  

With this capability, a RTE or legacy solution could be part of a safety-relevant solution in this 
context. But there might exist realizations of the Maintenance and Data Management (MDM) EULYNX 
subsystem that run in a non-safety-related context on top of the virtualization layer (i.e., without an 
RTE). These would only need to implement the relevant diagnostic and management interfaces for 
this type of subsystem, namely the SDI* and SMI*.  

To that end, it shall not make a difference if the communication partner is running within the same 
data center or located at any other place outside of the data center. 

3.2.2 Upcoming EULYNX standardization for IT security, installation and update 

If EULYNX also defines in the future standards for cross-functionalities such as IT security and 
installation/update with the associated infrastructure elements, then this shall be defined according to 
the solution which is needed within a data center.  

The new aspect (compared to the EULYNX architecture today) would be that all the processes and 
interfaces include the aspect of "an arbitrary number of applications is running on RTEs together on 
same hardware". In EULYNX, the situation today is "one product is running on one hardware device 
(without mixture of multiple applications and safety layers on the same hardware)." 
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3.2.3 Common requirements regarding geographical redundancy 

The requirements and architecture for the highest level of availability in case of a high grade of 
centralization shall be defined by EULYNX according to the solution for rail products running within a 
data center. That could be considered to reach the highest level of availability for relevant stations or 
lines.  

3.2.4 Cross-vendor integration and overall responsibility to solve 

To date, the topic "cross-vendor integration and overall responsibility" has not been implemented in a 
real-world installation for the newly defined standard interfaces, e.g., for the interfaces between a 
centralized interlocking logic and decentralized object controllers. On the PoC level, some very 
successful tests have been performed that demonstrated the correctness of the technical approach. 

Achieving the objective of "vendor independence" is therefore challenging. 

For additional details, see section 5.7. 

3.3 Security requirements 

3.3.1 Legal requirements 

The NIS directive [6] and the Cybersecurity Act of the European Union [7] are driving the security 
requirements for critical infrastructure as rail automation. 

The NIS Directive is implemented in national law in the EU member states (as the “IT-
Sicherheitsgesetz” in Germany). These laws require that operators of critical infrastructure such as rail 
automation systems set up an IT security management system (ISMS, e.g., as defined in ISO 27001), 
conduct regular external audits, report incidents, and implement state-of-the-art security. 

3.3.2 EU harmonization 

Over a period of four years, the cybersecurity working group of the EU research project Shift2Rail has 
created a consensus for IT security interoperability among the key European stakeholder (operators 
and solution providers) for rail automation systems. 

The first consensus was to use the international industrial security standards of IEC 62443 [10]. All 
books were analyzed and found to be fully applicable to rail automation and not in conflict with 
existing CENELEC standards in this domain. 

The outcome of the high-level and dozens of detailed risk assessments was that security level 3 is 
required for an acceptable risk for all major zones of the rail automation system. Security level 2 is 
required for external zones (behind a "data diode") as external diagnostics. 

In early 2021, the cybersecurity working group released a set of work products that are the foundation 
of interoperable security according to IEC 62443-3-3 SL3. The documents define a generic security 
architecture and three protection profiles with technical requirements: for trackside components, on-
board components, and FRMCS/ACS components. 

The output of X2Rail cybersecurity workgroup of Shift2Rail is made available for further detailing for 
standardization groups as UNISIG, ERA and EULYNX. 

3.3.3 Security requirements for components within the SIL4 Data Center 

Security requirements shall be derived from existing international standards as far as possible (e.g., 
IEC 62443, CENELEC TS 50701). 

The components (e.g., physical devices with data processing and communication interfaces) shall 
implement the requirements stated in the X2Rail-3 protection profile "trackside components". 

If components are used on-board, the X2Rail-3 protection profile "on-board components" shall be 
used. 
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The CSA Cloud Controls Matrix (CCM) [8] is a cybersecurity control framework for cloud computing, 
which is composed of 197 control objectives that are structured in 17 domains covering all key 
aspects of cloud technology. It can be used as a tool for the systematic assessment of a cloud 
implementation and provides guidance on which security controls should be implemented by which 
actor within the cloud supply chain. 

3.3.4 Organizational compliance 

Information security policies and guidelines in organizations need to be met in the form of processes 
adopted by organization of a CISO. There could be different governance models (e.g., three lines of 
defense) which affect the development process. Roles and responsibilities are necessary to be 
addressed in early stages of project for the matter of risk assessment, risk communication, risk 
treatment, and risk acceptance.  
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4 Architecture 

4.1 Basic architecture 

4.1.1 High-level system architecture  

The computing platform is based on the general system architecture that has been proposed in the 
RCA Architecture [1]. 

The main differences are in nomenclature due to a slightly different viewpoint on the architecture: 

• The hardware together with the load operating system and the virtualization layer form the 
Generic Computing Platform, which can be used for safe and non-safe applications. 

• The Generic Computing Platform together with the Runtime Environment (RTE) form the safe 
computing platform, on which the safe applications are run. 

• The virtualization layer is considered a separate top layer of the Generic Computing Platform. 
In contrast to the current RCA/OCORA architecture, it is not seen as part of RTE, since it is 
more related to the data center infrastructure, hosting multiple different RTEs and legacy 
systems. The virtualization layer might be sourced as an independent software solution. 

 

 

Figure 2 Computing platform 

 

It should be stressed that, unlike the point of view in the RCA/OCORA White Paper, it has been 
noticed in the collaboration among SMO and DB that at least for SIL4 Data Center deployments there 
would be a strong merit in also standardizing interfaces between RTE, virtualization, load operating 
system and COTS hardware, as shown in Figure 2. 

4.1.2 Basic RTE architecture 

The basic RTE architecture is proposed as follows: 

• A safety-relevant application APP-1 is running in at least two application replicas APP-1[1] 
and APP-1[2] in parallel (synchronously) as cyclic processes (see section 4.1.3). For 
increased availability, the instantiation of additional application replicas shall be possible. The 
number of replicas and the distribution of the replicas on the hardware computing nodes 
depend on the SIL requirements of the application and the safety concept of the RTE, e.g., if 
the 2oo3 or 2x2oo2 principle is used. The RTE and application replicas are running 
distributed on separate hardware computing nodes (see section 4.10). 

• All replicas of an application are running with the same application software. 

• The outputs of the individual replicas APP-1[1] and APP-1[2] are compared by a safe voter of 
the RTE. 

• After successful voting, the RTE-internal safe message is handed over to a protocol gateway 
of the RTE, which forwards the data via the defined communication protocol to the connected 
systems. 
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• A safe clock component of the RTE creates the triggers for the cyclic working of the 
application replicas. 

 

All RTE implementations (provided by different vendors) shall be agnostic to the application logic 
regarding: 

• the safety concept and redundancy concept (local and geographical redundancy) of their own 
running installation 

• the safe, redundant, and secure communication to the connected systems 

 

The RTE design shall support the required flexibility to ensure the following: 

• system evolvability, e.g., to add additional protocol gateways (as their own architecture 
elements) for further communication protocols 

• combined usage of different communication protocols (each provided by a separate, protocol-
specific gateway) 

 

Figure 3 below shows an application APP-1 running as two replicas [1/2]. The communication to the 
connected system(s) is done with redundant communication, i.e., two transport channels [A/B] 

 

Figure 3 Basic RTE architecture 

The connected system can be installed on the same computing nodes or on other computing nodes, it 
can be an application within the same installation or an application within another installation. 

4.1.3 Parallel synchronous cyclic application replicas 

For application replicas which are running distributed on several computing nodes, a synchronized 
cyclic working principle is recommended to achieve a synchronously running system as a basis for 
stable voting of the outputs created by the replicas running in parallel. 

In an IP-based architecture – considering geographical redundancy – network latency times and jitter 
effects in the behavior of the running software components need to be tolerated by the RTE in a way 
that achieves a stably running system. 

 Therefore, it is not possible from today’s perspective to use application replica cycle times in case of 
very small time ranges as e.g., < 100ms. The specific limit for the lowest possible cycle time depends 
on the network behavior and on the technical solution of the RTE in handling of such influences, such 
as jittering effects and network latency times. 
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The trigger for the synchronous start of work of all application replicas must be created by a safe 
monotonous clock. This trigger needs to be created for all replicas at the same time. 

The cycle time of an application is used for all associated replicas and shall be configurable for each 
application. That depends on: 

• the functionality of the application (e.g., driven by such safety-relevant requirements as “safe 
reaction within time x“) 

• the message processing time of the application 
This depends very much on the number of incoming messages per time, e.g., driven by the 
size of the controlled area of the installation (e.g., small interlocking, large interlocking). 

The defined cycle time shall consider even worst-case scenarios in terms of performance, time 
behavior and message processing of the application. 

Cyclic working means that all messages to be processed by the application are buffered until the next 
working cycle begins. At the start of the working cycle, all buffered messages are considered for 
processing by the application. 

This message buffering leads to "delay" times in the processing of the buffered messages. As an 
average value, the delay time is half the defined cycle time. 

4.1.4 Protocol gateways 

The application (running as several replicas on the RTE) shall be abstracted from the communication 
protocols which are required for communication to the connected systems: 

• The data transfer to the connected systems shall be provided by protocol gateways of the 
RTE. 

• A protocol gateway shall handle all required safety and redundancy aspects (for safe and 
redundant communication), transparent for the application. 

• The content/payload of messages exchanged end-to-end between applications shall be 
completely transparent for the protocol gateway of the RTE. 

• Each communication protocol for communication to other systems provided by other vendors 
needs to be defined as a vendor-independent standard (e.g., SCI*). 

• The internal RTE communication between the application replicas and the RTE components 
(clock, voter, protocol gateway) is defined by the RTE itself; this safety relevant internal RTE 
communication is a basic part of the safety concept of the RTE. 

• The application receives and sends content/payload without knowledge about the 
communication protocol.  

• The RTE architecture shall enable an easy extension regarding additional communication 
protocols by additional protocol gateways. 

• For each application, it shall be possible to decide by application specific RTE configuration 
about the usage of the specific one or more communication protocol gateways. 

 
The following table shows the corresponding (responsible) part within an RCA-based installation for 
the individual OSI layers: 
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Table 1 Responsible parts for the individual OSI layers 

Each safety-relevant protocol needs to be realized by the RTE, e.g., as a "safe protocol gateway" as 
part of the safety layer of the RTE.  

Such a safe protocol gateway belongs technically close to the RTE because it needs a safety layer to 
be a "safe" protocol and it needs to participate on the RTE internal communication to receive 
messages from the internal RTE voting and send messages to the internal RTE application replicas. 

A safe protocol gateway of an RTE is responsible for safe and redundant communication. It is one of 
the safe "endpoints" in terms of safety-relevant communication. 

The communication stack and IT security mechanism shall be realized within the basic operating 
system (Basic OS) of the RTE. The communication and security functions shall be provided to the 
safe protocol gateways via standard application programming interfaces (e.g., network socket API). 
This keeps the safe protocol gateways independent from the communication and security functions 
and follows the principle of separating safety and security. 

For solutions to transfer safety-relevant communication via non-safety-relevant protocols, it is possible 
to use non-safety-relevant communication protocols independently of the RTE. These non-safety-
relevant protocols are handled as a "black channel". 

 
The Figure 4 below shows an example of how safety-relevant protocols could be provided by the 
RTE and non-safety-relevant (example here: FRMCS) protocols could be provided as a "service 
function" by an independent vendor. The application APP-1 is running in three replicas [1/2/3]. Each 
application replica creates the application payload for communication with its counterpart at the 
communication endpoint on the far right (not shown in the figure) and provides this payload via the 
API. The output of the application replicas is processed by the voter and then handed over to the 
protocol gateway of the RTE. 

The RTE ultimately also provides the lower layer protocol stack (for instance TLS/TCP/IP) for 
communication with the service function residing outside the RTE. The service function decodes the 
TLS/TCP/IP, adds the "FRMCS layer", and provides the TLS/TCP/IP layers underneath again, before 
the communication leaves the service function. 

It should be noted that Figure 4 is highly simplified, and more complex constellations are conceivable. 
For instance, there could be multiple instances of service functions (e.g., related to independent 
communication paths). In addition, the figure only shows the application user plane and omits the fact 
that the so-called "FRMCS Service Client" that would ideally be provided by the service function also 
has to establish a control plane connection to a so-called "FRMCS Service Server", which is not 
shown in the figure. Additionally, the redundancy concept for such a communication needs to be 
defined to achieve a highly available system even in the case of a hardware failure. 
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Figure 4 Architecture for connection of a non safety relevant service function 

Figure 5 below shows how the individual parts (application, RTE protocol gateway, service function) 
on both sides of the end-to-end communication are involved in communication. 

 

Figure 5 Example: FRMCS protocol as non safety relevant service function 

 

4.2 Flexibility in SIL4 Data Centers 

Figure 6 below shows the principle of how the required flexibility in the architecture for several 
installations with different SIL levels running in the same data center on the same hardware 
computing nodes can be realized.  

To achieve the goal of "centralization of multiple installations (provided by different vendors) together 
on the same hardware computing nodes", a unified solution for virtualization within one data center is 
necessary, i.e., every installation is running in one or multiple virtual machine(s). 

It shall be possible to migrate existing legacy applications (e.g., today's business logic for DB's digital 
interlockings (DSTW)) into the same data center as newly developed applications. 

To that end, it is necessary to define the common basic requirements, which shall be fulfilled by both 
RCA and legacy installation types in the same way to achieve a common behavior in the data center. 

Example in the figure below: 

• The applications APP-1 and APP-2 are running as an application bundle on RTE-1 with the 
2oo3 principle in three instances [1/2/3] distributed on three hardware computing nodes. 
For the aspect "bundling of applications", see section 4.4.4. 

• The application APP-3 is running on RTE-2 with the 2oo3 principle in three instances [1/2/3] 
distributed on three hardware computing nodes. 
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• The legacy installation Legacy Inst-1 is running with the 2oo3 principle in three instances 
[1/2/3] distributed on three hardware computing nodes. 
For details, see also section 4.6. 

• On each hardware computing node, diagnostic software is running to provide diagnostic data 
related to the underlying parts, such as virtualization and COTS hardware. 

 

Figure 6 Scalability: several different installations running on the same computing nodes 

To integrate several installations running with different RTE solutions, each in their own virtual 
machine, the requirements for the virtualization solution need to be defined, and each safety layer 
(RTE or legacy) needs to include those requirements in their own safety concept. These requirements 
for the virtualization shall cover the needs of all safety layers because a safety layer must not have 
"stronger" requirements regarding the behavior (and quality of behavior) of the virtualization solution. 

An open point is where to place the hardware abstraction. On the one hand, it is appreciable to have 
the hardware abstraction implemented in the virtualization layer as much as possible. On the other 
hand, this would lead to a full emulation of the hardware, which is not practicable. So, further 
investigations should be made regarding which hardware aspects should be abstracted in the 
virtualization layer and which in the RTE. 

The solution for the virtualization must be suitable for the applications' requirements and their required 
time behavior, which to date has not been extensively analyzed. 

Another challenge is the orchestration of the virtualization, i.e., which installation will run on which 
processors and gets which system resources (memory, interface). To that end, a separate 
orchestration solution will be necessary to orchestrate and configure the virtualization layer. This 
should be investigated further in more detail.  

4.3 Support of different lifecycles for products and sub-products 

To flexibly handle individual parts with different lifecycles, these parts shall be handled as 
separate sub-products with modular validation/assessment/approval (depending on the SIL level of 
the sub-product). 

To that end, especially as part of minimizing maintenance efforts, it is essential to separate the non-
safety-relevant parts (e.g., for IT security) in the best way possible from the safety-relevant parts (e.g., 
safety layer). 

Figure 7 below shows the principle of separating the products into sub-products, according to the 
related SIL levels and types (specific/generic). 

Interfaces between the sub-products themselves are defined by and the responsibility of the product 
vendor.  
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Figure 7 Products and sub-products 

 

4.4 Architecture within an RCA installation 

Each individual APS* of an RCA-based installation (e.g., system with the functionality "Frankfurt 
interlocking") is running on its own RTE (with its own voter, clock, protocol gateway). Different APS* 
may run on different RTE solutions from different vendors. 

The communication between the individual APS* within the same installation is done by the involved 
RTEs that the APS* are running on (except for the application layer, which is transparent to the 
RTEs).  

Note:  
It is expected that RCA will specify (or at least recommend) suitable safe communication protocols for 
communication between different APS*. 

4.4.1 RCA installation with different RTE solutions for APS* 

Figure 8 below shows four applications (APP-1/2/3/4), each running on an RTE from a different 
vendor (RTE-1/2/3/4). 

 

Figure 8 Installation with applications each on own RTE 

 

In such an installation, the RTEs would apply the safe communication protocol for communication 
between different APS* that is to be specified/recommended by RCA.  
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Figure 9 Inter-application communication by different RTE 

 

If multiple, different RTE solutions were used in one installation, the integrity check by the RTEs (see 
section 4.10.7) cannot cover the overall view of the installation. To that end, it must be evaluated in 
the overall safety case how to handle the issue of "overall integrity of an installation with different 
RTEs". 

Note: 
The existing standard protocols for communication between systems (e.g., RaSTA protocol for all the 
SCI* interfaces of EULYNX) are designed for client-server-like communications. RaSTA is explicitly 
not recommended for use in system internal communication due to missing flexibility as peer-to-peer 
protocol and restriction regarding non-SIL participants. Therefore, another protocol must be found in 
RCA or designed for the purpose of safe communication between RTEs. 

Different RTE solutions (e.g., with 2oo3 principle, 2x2oo2 principle) lead to different distributions onto 
the hardware computing nodes. 

 

Figure 10 below shows exemplary the different usage of the hardware computing nodes: 

• APP-1 is running on RTE-1 with the 2oo3 principle: three instances [1/2/3] on three hardware 
computing nodes HW-1/2/3 with redundant communication [A/B] via HW-1 and HW-2 

• APP-2 is running on RTE-2 with the 2x2oo2 principle: four instances [1/2/3/4] on four 
hardware computing nodes HW-1/2/3/4 with redundant communication [A/B] via HW-1 and 
HW-4 

 

Figure 10 Different usage of hardware computing nodes 
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4.4.2 RCA installation with the same RTE solution for all APS* 

Figure 11 below shows four applications (APP-1/2/3/4), each running on an instance of the same RTE 
solution. 

In this case, the RTE vendor may use the safe communication protocols specified/recommended by 
RCA for communication between different APS* subsystems, as in the previous case. Alternatively, 
the vendor may also apply proprietary safe communication protocols, if – for instance – this is 
superior from a performance, timing, or efficiency perspective. 

 

Figure 11 Installation with applications on same RTE 
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For this installation, communication for the data exchange between applications is achieved using an 
RTE-specific message transfer (tunneling gateway) for communication between the individual RTEs. 

 

Figure 12 Inter-application communication within same RTE 

4.4.3 Communication between applications 

For communication between applications, it must be considered that message distribution delays are 
caused by fixed work cycles of application scheduling schemes. For the aspect "message delay of 
incoming messages", it does not matter if both applications are running on the same hardware 
computing nodes or distributed. The root cause for the delay is the cyclic execution of the 
applications, as messages can be processed only in the next application cycle, independent of the 
network latency. 

 

Figure 13 Inter-application communication 

4.4.4 Bundling of applications for time-critical inter-application communication 

Therefore, for very time-critical inter-application communication, it is necessary to bundle these 
applications within the same application replica. The goal of this application bundling is that the time-
critical inter-application communication does not need to go through the voting mechanism, but rather 
stays in the bundle within the different replicas. 

For this application bundling, the RTE must provide additional services called "Application Manager" 
(AppMan). This AppMan within the RTE shall provide all the required services to run several time-
critical applications within same application replica. 

Example:  
The following Figure 14 shows two applications (APP-1 and APP-2) running as a bundle in each 
replica. 
Incoming messages are distributed to both replicas and are forwarded within the bundle to APP-2. 
APP-1 and APP-2 communicate within the bundle, and APP-1 creates the output which is forwarded 
to the voter. 
The bundle-internal, inter-application communication is not visible to the voter. 



Page: 37 / 109 

 

Figure 14 Bundling of applications 

The required services to handle the cross-dependencies for interaction between bundled applications 
depend on: 

• time behavior of the individual applications 

• time-critical interactions between bundled applications 

• time behavior of the complete bundle (= complete replica), cycle time (worst-case scenarios!) 

• application priorities (in the start-up phase, in running-mode) 

• message priorities for interactions within the bundle 

• message priorities for incoming and outgoing messages 

• handling of failure scenarios (only a completely running bundle is useful: how to handle partial 
failures of individual parts of the bundle) 

 

Specific details about these application-related interdependencies were not included in the scope of 
this project and require additional investigation.  

4.4.5 Application communication to connected rail systems 

Other rail systems (e.g., object controllers) need to be connected to exactly one APS application. But 
it is possible that several other rail systems are connected to the same APS application. 

 

Figure 15 Communication to connected rail systems 
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4.5 API of the RTE 

The API should be designed in a way that applications can be ported from one RTE implementation to 
the implementation of another vendor without the need of redevelopment. Nevertheless, it will need a 
recompilation, reintegration, and adaption of the SRACs to the new RTE. Also, the test cases need to 
be reconsidered and possibly updated.  

The following parts of the API very closely depend on the specific safety solution of the RTE (which is 
not defined in detail for RTE solutions): 

4.5.1 Specific safety measures for the application software running as application replicas 

Dedicated safety mechanisms need to be provided and implemented by the application replica that 
are executed at runtime. 

The specific safety mechanisms depend on the specific safety concept of the RTE solution and do not 
directly affect the logic of the application. Such safety mechanisms may be e.g., memory checks, self-
checks, generation of hash values over processed activities. 

Such safety mechanisms need to be added to the application source code e.g., by RTE-related tools 
(category T3) to fulfill the associated SRACS of the RTE. 

These required safety mechanisms will be different for each RTE solution. 

4.5.2 Specific development tools for application development 

Each RTE solution will require the use of dedicated tools for the development of an application (e.g., 
compiler, tool for adding safety mechanisms to the source code). 

4.5.3 Specific test kit for application development and validation 

Each RTE solution will provide specific RTE parts as test kit for testing of the application. 

This test kit provides means of support for simpler testing and original RTE parts for the vertical 
integration of the application onto the original RTE. 

4.5.4 Specific CFG and ENG data for RTE usage by an application 

Each RTE solution will define specific configuration (CFG) data (for the generic use of the RTE) and 
engineering (ENG) data (for the specific use of the RTE in specific installations). 

This safety-relevant data depends on the RTE solution and needs to be set by the application (as the 
RTE user). 

Examples of such data: 

• RTE configuration data for the specific running (2oo3, 2x2oo2, etc.) mode on the hardware 
computing nodes 

• RTE configuration data for the required optional RTE parts, such as communication protocol 
gateways 

• RTE configuration data for the specific application (e.g., application-related cycle time) 

• RTE engineering data for the specific communication connections (to the connected systems) 

4.5.5 Specific data handling tools for safety relevant RTE CFG and ENG data 

RTE-related tools may be helpful for handling safety-relevant CFG and ENG data. 

The data format of this data is defined by the RTE itself, though it would be helpful to standardize it to 
a certain extent for improved portability of applications across RTE solutions. 

To optimally handle such data, the following may be useful: 
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• performing the necessary checks (syntax, consistency) offline using a dedicated tool to avoid 
checks on the RTE 

• converting such data offline from a readable format (e.g., text file) into a binary format to avoid 
"text parsing" on the RTE 

 

The toolchain and process for safe conversion from a readable format (e.g., text file) into a binary 
format requires validation. 

4.5.6 Specific SRACS of the RTE 

Each RTE solution will provide specific SRACS. 

So far, SRACs are highly dependent on the specific RTE solution. To enable portability of applications 
across different RTE implementations, without major redevelopment efforts, it would be desirable to 
standardize SRACs to some extent. This is currently seen as challenging and requires additional 
investigation. 

4.5.7 RTE deliveries to the application 

The following Figure 16 shows the different kinds of "RTE deliveries" which shall be provided by each 
RTE vendor to the application vendor. 

These deliveries depend on the specific RTE solution and are required for development, integration, 
and validation of the application. 

 

Figure 16 RTE solution specific parts of API 

(1) = operative API within the RTE 

(2) = process interface for development, integration, and validation of the application 
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4.5.8 Abstraction of the application from RTE solution-specific safety activities 

To achieve a completely "RTE-independent" application source code, an additional abstraction 
between "pure application logic" (application source code) and "executable application for a specific 
RTE" would be necessary. 

This would mean to separate the RTE-related application activities: 

• use of RTE-related T3 tools for software generation 

• use of original RTE software parts for vertical integration "application is running on an RTE" 

• safety evaluation of fulfillment of the RTE SRACS by the application 

• creation of the RTE configuration data as defined by the application 

 

 
An application APP-1 running on two different RTE solutions (RTE-1 and RTE-2): 

 

Figure 17 Abstraction of the application 

This abstraction leads to a shift of responsibility for all RTE-related application activities to achieve a 
certification for "application is running correctly on an RTE". 

Not only the vertical integration with the RTE but also the horizontal integration with neighboring 
applications is shifted to another role because abstracted applications cannot be integrated in a real 
context with abstracted neighboring applications. 

 

This role needs to assume complete responsibility for: 

• porting of abstract applications to the RTE 

• vertical integration "APP-1 is running on RTE-x" 

• horizontal integration “APP-1 with neighboring applications” 

• overall validation 

 

Figure 18 below shows the basic situation in the case of abstracted applications for a simple 
exemplary installation with two applications, each on a different RTE. 
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Figure 18 Porting of abstract applications on RTE 

4.5.9 Summary 

The opening of the market for application development by multiple vendors (which do not have an 
RTE in their own portfolio) is very much simplified by defining a generic API. 

However, the RTE API can only provide basic support and the remaining specifics will lead to a 
remaining RTE-related effort for development (example: SRACs), configuration (example: replica 
configuration), testing (example: SRAC-related tests), building (linking with the RTE), integration (on 
the RTE), and certification (not for the application's business logic but for the RTE specifics) so that a 
delivered application cannot be freely exchanged between the RTEs. 

It should be analyzed whether this restriction would not be weighted too high: to manage efforts, it can 
be envisaged to deploy an application only on certain RTE types. However, this would impose a 
restriction for cases like those stated in sections 4.5.4 and 4.5.5. In practice, this will likely mean 
restricting the number of different RTE types to a small number such as two. 

An alternative analysis result could be an RTE abstraction layer in each application as depicted in 
section 4.5.8. 

4.6 Migration concept for legacy solutions 

To achieve a common data center, it is important to define the relevant interfaces which must be 
provided by a legacy installation and relevant requirements for basic aspects to be fulfilled by a 
migrated legacy solution. 

4.6.1 Interfaces for legacy installations 

To bring a legacy installation (safety layer, application, and data) into the same data center as an 
RCA-based system, the legacy installation shall fulfill the same basic interfaces as defined for an 
RCA-based installation. 

The main interfaces to migrate a legacy installation are: 

• interface to COTS hardware considering CPU architecture and performance 

• interface to the virtualization considering the required time behavior of the virtualization and 
the required safety-relevant behavior of the virtualization (e.g., reliability regarding the 
mapping of the running SIL4 software distributed on several different hardware computing 
nodes) 

• interface to the load operating system for the common handling of software and data updates 
in the data center 

• interfaces to the infrastructure for IT security 

• interfaces to the infrastructure for installation and update 

• interfaces to the central diagnostic system 
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Out of scope are the details about the legacy installation's internal architecture, e.g., the interface 
between legacy application and legacy safety layer.  

This is completely the responsibility of the owner/vendor of the legacy installation. 

 

Figure 19 Standardization for migration of legacy solutions 

4.6.2 Requirements for legacy installations 

Important requirements for the migration of a legacy system are: 

• The RTE and the safety layer of the legacy installation shall provide the same flexibility and 
scalability regarding the usage of the hardware computing nodes. 

• The legacy installation shall allow that unused CPU resources are used by any other software 
(of any safety integrity level). 

• The legacy installation shall fulfill all the common interfaces (see section 4.6.1 above). 

4.6.3 Variants of legacy installations 

For migrating a legacy installation to the SIL4 Data Center, two variants are possible: 

1. The legacy installation is a solution with an RTE and a legacy application-specific Application 
Manager (AppMan). 
In this variant, the same RTE is used as for RCA-based systems, but for running the legacy 
application, a specific Application Manager is necessary. 
All services required by the legacy application are provided by the Application Manager for 
the legacy application. 
This Application Manager is a kind of "legacy operating system" for the legacy application. 
In this variant, the internal system interface is not suitable for the generic API of the RTE. 
The legacy installation is provided as complete package by the same vendor. 

2. The legacy installation is a complete standalone solution independent from the RTE. 

 

Both variants are provided as a complete package by the same vendor, and the preferred variant for 
the specific solution will depend on the specific situation of the legacy installation. 

For the owner of the data center, it shall not make a difference which legacy installation variant is 
installed; the basic behavior of the installations on the computing nodes shall be the same for all 
variants. 
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Figure 20 Variants of legacy solutions 

4.7 Scalability 

The following aspects of the SIL4 Data Center need to be flexibly scalable. 

Regarding the applications: 

• The application cycle time shall be configurable for each application individually (in the range 
of 100 ms to 400 ms). 

• The number of applications running together as a bundle shall not be limited. 

 

Regarding communication: 

• The specific usage of external communication protocols (e.g., RaSTA connections via a 
RaSTA protocol gateway) shall be flexibly scalable for each individual application. 

• Communication protocol-related parameters shall be configurable per communication 
connection (e.g., the time period for RaSTA heartbeat messages). 

• Redundancy aspects (for redundant communication) shall be solved transparently for the 
application and be flexibly scalable regarding the number of used transport channels (e.g., 
four transport channels in case of geographical redundancy). 

 

Regarding basic installations: 

• The redundancy concept shall be configurable for each installation regarding local and 
geographical redundancy. 

• The number of installations running on the same hardware computing nodes (each installation 
in its own virtual machine from a hardware and virtualization layer point of view) shall be 
flexibly scalable. 

4.8 Technical flexibility in maintenance 

This section describes the required technical flexibility to allow efficient maintenance of the individual 
parts of a data center according to the individual lifecycles. 

Besides the technical possibilities, the operating expenses resulting from the specific maintenance 
strategy need to be considered for any decision. This will be discussed in section 6.3. 

The maintenance of parts with short lifecycles (e.g., COTS hardware, implemented IT security 
mechanism in a non-safe layer) shall be possible during the runtime of installations without the need 
of stopping the system. 
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To that end, two aspects need to be taken into consideration: 

1. system distribution: 
Each safety-relevant installed system (e.g., Frankfurt interlocking) is running in several 
instances distributed on several hardware computing nodes with hardware redundancy. 

2. Resource sharing: 
The individual instances of different safety-relevant installations (e.g., Frankfurt interlocking 
and Berlin interlocking) can run together on the same hardware computing nodes.  

 

Figure 21 below shows an exemplary situation where two installations are running together on the 
same hardware computing nodes. 

 

The parts highlighted in green are the "non-safety-relevant parts with short lifecycles". 

For these parts, maintenance shall be possible during system runtime via a gradual maintenance 
process for the individual green areas, i.e., instance by instance. 

This flexibility needs to be permitted from the point of view of the safety concepts of the RTEs; for 
more information, see section 4.10.6.  

 

The parts highlighted in yellow are the "safety-relevant parts". 

For these parts, it is not possible to make changes in a running installation. Each installation needs to 
be stopped completely (all three instances on HW-1/2/3) for maintenance. 

Even in a configuration with geographical redundancy, the complete installation (running as several 
instances on different geographical sites for geographical redundancy) is affected by each update 
activity. 

 

Figure 21 Flexibility in update for maintenance 

4.8.1 Maintenance and qualification of COTS hardware 

For lean maintenance of the hardware computing nodes, it shall be possible to replace hardware 
computing nodes hardware by hardware for a running system at runtime with full safety responsibility. 

To that end, it shall be possible (= permitted from a system point of view) to run a system on a 
combination of different versions of hardware computing nodes, i.e., all the software layers on it 
(virtualization, RTE) shall allow to use different types/versions of hardware computing nodes within 
the system context. 
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It must be considered that all used hardware versions need to be "qualified" for usage within the 
specific generic system. This hardware qualification is necessary to ensure that the new hardware 
version can be used without any impact on the availability (performance, time behavior) of the 
systems running on it. 
Hardware qualification needs to be done for each environment variant as a combination of 
virtualization version-x and RTE version-y. 

For hardware maintenance, an overall configuration management is necessary to define "which 
hardware version is qualified for which environment (=virtualization version x and RTE version y)".  
For availability reasons, the usage of a specific hardware version is only allowed in environments 
according to the hardware qualification for the specific environment. 

Changes in the hardware of a specific hardware computing node shall not have any impact on the 
behavior of software layers running on it. 

4.8.2 Maintenance and qualification of virtualization software 

For lean maintenance of the virtualization software, it shall be possible to update the virtualization 
software one node at a time for a running system at runtime with full safety responsibility. 

To that end, it shall be possible (=permitted from a system point of view) to have different versions of 
the virtualization software running on the different hardware computing nodes, i.e., all the RTEs on it 
shall allow to use different versions of virtualization software on the individual hardware computing 
nodes within the system context. 

It must be considered that all used virtualization software versions need to be "qualified" for usage 
within the specific generic system. This software qualification is necessary to ensure that the new 
virtualization software can be used without any impact on the availability (performance, time behavior) 
of the systems running on it. 
Software qualification for the virtualization software needs to be done for each environment variant as 
a combination of virtualization software version-x and RTE version-y. 

Changes in the virtualization software on a specific hardware computing node shall not have any 
impact on the behavior of the RTEs running on it. 

4.8.3 Maintenance of the RTE – basic operating system (non-safety-relevant) 

For lean maintenance of the basic operating system of the RTE (e.g., IT security patches), it shall be 
possible to update the basic operating system of the RTE one node at a time for the running system 
at runtime with safety responsibility. 

To that end, it shall be possible (=permitted from an RTE point of view) to have different versions of 
the basic operating system running on different hardware computing nodes within the RTE context. 
The associated RTE shall allow to use different versions of its own basic operating system on the 
individual hardware computing nodes within the RTE context. 

It must be considered that all used basic operating system software versions need to be "qualified" for 
usage within the specific installation. This software qualification is necessary to ensure that the new 
basic operating system software can be used without any impact on the availability (performance, 
time behavior) of the installations running on it. 
Software qualification for the basic operating system software needs to be done for each environment 
variant as a combination of basic operating system version-x and safety layer version-y of the 
associated RTE. 

Changes in the behavior of the basic operating system on a specific hardware computing node shall 
not have any impact on the behavior of the RTE safety layer running on it. 

4.8.4 Maintenance of the RTE – safety layer and applications (safety-relevant) 

For the safety-relevant parts of an installation (RTE safety layer and applications), maintenance 
always affects the complete installation, i.e., all involved instances (RTE safety layer instances, 
application replicas). 



Page: 46 / 109 

From a safety point of view, all redundantly running parts (RTE safety layer instances, 
application replicas) within an individual installation of an application running on an RTE shall have an 
identical version, meaning all RTE safety layer instances have the same version and all application 
replicas have the same version. 

The precondition for maintenance is the overall integration of all involved parts (all involved 
installations of individual applications running on the RTEs). 

Note: 
The voter of the RTE safety layer cannot vote the outgoing messages of application replicas with 
different versions as they result in different application replica behavior. 

4.8.5 Maintenance of legacy installations 

For legacy installations, the maintenance situation is defined as follows:  

The vendor of the legacy installation provides a new version of the legacy installation and it is the 
responsibility of the legacy vendor that all required changes are included in the delivery package. 

Even for legacy systems, the maintenance of non-safety-relevant parts (e.g., IT security patches) 
shall be done in a lean way without affecting safety-relevant parts. 

4.8.6 Commissioning of new installations 

The commissioning of a new installation on hardware computing nodes which are already in use for 
running installations shall be possible without any impact on the running installations. 

The virtualization layer and the virtual machines need to be configured in a way that any changes in 
the system configuration (e.g., setup of additional virtual machines) do not affect the existing virtual 
machines. This applies especially to performance degradations due to additional virtual machines 
(e.g., processor load, memory access time, network latency, and bandwidth). 

4.9 System interfaces 

All relevant interfaces shall be identified because these interfaces need to be defined as standard to 
achieve a vendor-independent common architecture for the complete data center. 

Figure 22 shows the interfaces which need to be defined as standard: 

 

The need for standardization of the interfaces between the RTEs depends on the decision of whether 
the RTEs within one installation shall be from only one vendor or multiple vendors (see section 4.4.1 
and 4.4.2). 

Figure 22 System interfaces 
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4.9.1 Interfaces between different rail installations  

The interfaces between RCA installations shall be defined as standard in the same way as SCI* for 
coupling to legacy installations (i.e., including safe communication protocols). 

The same standard SCI* interfaces shall be used independently of the location of the systems. This 
includes the following two scenarios: 

• both systems are running within the same data center 

• both systems are located at different locations 

 

The communication between installations via SCI* interfaces is independent from the installation's 
internal communication between the individual applications, i.e., if all applications are running on the 
same RTE solution or on different RTE solutions. 

 

Figure 23 Interfaces between rail systems 

4.9.2 Interfaces for installation and update 

It shall be possible to install and update the rail systems within the SIL4 Data Center remotely by 
means of an installation and update tool operated by a maintainer. 

To that end, the security aspects need to be considered. 

The mechanism for installation and update of an installed system shall be transparent for the 
application, i.e., this process and its interfaces shall not touch the application. 

On each individual hardware computing node of the target system, the load operating system 
(installed on the hardware) will be responsible for installation and update. Specifically, it performs the 
following: 

• CPU setup to prepare the COTS hardware for remote access 

• remote installation and update of the virtualization solution and the virtual machines 

• remote transfer and storage of the installation into the virtual machines 

• start-up of the installations by the installation itself (detailed start-up mechanism must be 
implemented within the installation) 

 

The interfaces between the infrastructure for installation and update, the load operating system, and 
the affected software parts (virtualization, RTE, legacy installation) shall be defined as standard to 
achieve a vendor-independent solution for the complete data center. 



Page: 48 / 109 

 

Figure 24 Interfaces for installation and update 

The installation and update process does not include the integrity checks at system start-up and 
runtime. This is part of the integrity checks described in section 4.10.7. 

4.9.3 Interfaces for IT security 

Each single installation running in the data center is required to fulfill the IT security requirements (the 
requirements of the protection profile "trackside component" of X2Rail-3). 

Central services for IT security are provided by the central infrastructure for IT security. As per X2Rail-
3 IT-Security Architecture, the central infrastructure for IT security consists of the mandatory and 
highly recommended shared security services with interfaces based on international standards. 

X2Rail-3 defined the protocols used for the interfaces of the shared security services as follows (refer 
to section 4.12): 

• System-wide time synchronization (TIME): NTPv4 (RFC 5905) 

• Central logging (LOG): syslog-ng (i.e., syslog over TLS) (RFC 5425) 

• Security and Event Management System (SIEM): syslog-ng (RFC 5425) 

• Certificate Management (PKI): CMP (RFC 4210) 

• Identity and Access Management (IAM): SCIMv2 over TLS (RFC 7655) 

• Backup (BKP): rsync over SSH 

• Remote SW Update (SMU): OPC UA SC & HTTPS 

• Asset Inventory (INV): OPC UA SC 
 

The interfaces for access to the COTS hardware (e.g., Trusted Platform Module) need to be defined 
as standard for all kind of installations (RCA/legacy). 

A possible solution is the unified trust anchor API for the Linux operating system libuta, refer to 
https://github.com/siemens/libuta for further information) 
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Figure 25 Interfaces for IT security 

4.9.4 Interfaces to central diagnostic system 

All software layers within the data center provide their own diagnostic data to the central diagnostic 
system. 

The central diagnostic system collects the diagnostic data of all software layers running in all 
computing nodes at all existing geographical sites (Figure 26). 

4.10 Safety and availability 

4.10.1 RTE safety measures for application replicas 

All required safety measures for the deployment of the application replicas fall within the responsibility 
of the RTE but are not completely encapsulated. 

Depending on the specific solution of the RTE, different mechanisms and RTE-related tools need to 
be considered and might generate code that instruments the application. 

This shall not have any impact on the functional logic of the application itself, but it affects the 
processes on side of the application for development, integration, and validation of the application. To 
mitigate or even eliminate this, a concept of abstraction layer (see section 4.5.8) should be foreseen. 

Figure 26 Interfaces for diagnosis 
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4.10.2 Availability of application replicas 

The RTE shall be scalable regarding the number of application replicas to increase the availability of 
the installation. 

The safety-related requirement "at least two application replicas on two different hardware computing 
nodes" can be enhanced to include the availability aspect: "at least two application replicas on the 
same hardware computing node for availability (in addition to the replicas on different hardware 
computing nodes)". 

Each transitory failure of an individual replica shall be repaired automatically by the RTE as fast as 
possible. 

The goal is to achieve a system with an unreduced number of running replicas under all 
circumstances. 

Note:  
Effects on individual application replicas can be caused by e.g., bit dumpers, influences by non-
safety-relevant software layers (e.g., virtualization). 

4.10.3 Safe and available RTE components 

All required safety measures for achieving safe voting, a safe clock and safe protocol gateways fall 
within the responsibility of the RTE itself and transparent for the application. 

Any transitory influence on an individual software component shall not lead to static failure of the 
software component; it shall be repaired automatically by the RTE as fast as possible. 

4.10.4 Safe internal RTE communication protocol 

The safety measures for the internal RTE communication protocol for communication between the 
RTE components itself fall within the responsibility of the RTE and are transparent for the application.  

4.10.5 Separation of safety-relevant and non-safety-relevant parts 

The safety argumentation of the RTE shall define a clear separation between the safety-relevant parts 
(safety layer, application) and the non-safety-relevant parts (basic operating system incl. security 
layer, virtualization). 

Motivation: Allow a lean process of handling changes in non-safety-relevant parts with shorter 
lifecycles (e.g., IT security patches) without impacting the assessments of the safety-relevant parts. 

4.10.6 Flexible usage of non-safety-relevant parts  

The safety argumentation of the RTE shall allow flexible usage of the non-safety-relevant parts. 

For flexible maintenance of the running installation, the RTE instances on the hardware computing 
nodes shall be permitted to run on different (integrated, of course) versions of the non-safety-relevant 
parts as (the RTE’s) own basic operating system, hardware, and virtualization. 

Motivation: Enable a lean maintenance process for the non-safety-relevant parts instance by instance 
without the need for a complete stop of the running installation. 

4.10.7 Integrity check for safety-relevant parts of an installation 

The integrity of all involved safety-relevant parts of an installed system (RTE safety layer instances, 
application replicas) running distributed on separate computing nodes shall be ensured by the RTE. 

This integrity shall be continuously ensured by the RTE for the complete lifecycle of the system 
– independent of the configuration of local/geographical redundancy. 
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Motivation: The configuration of an installation can be affected by non-safety-relevant parts, e.g., by 
the upload mechanism for software maintenance. To that end, any effect on integrity shall be 
identified safely and continuously by the RTE. 

Note: 
If an installation (e.g., Frankfurt interlocking) consists of several different RTE solutions, this integrity 
check cannot be done by the RTEs (because each RTE has only a reduced scope within the 
installation). For the scenario "several RTE solutions in one installation", the issue of integrity checks 
is not clarified today. 

4.10.8 Persistent saving of application data by the RTE 

The RTE shall provide a functionality for persistent saving of application data in case an entire system 
restart occurs. 

Note:  
If an installation (e.g., Frankfurt interlocking) consists of several different RTE solutions, 
persistent data saving is solved individually by the RTE solutions. 

This needs to be considered from an overall point of view to ensure that the saved data is consistent 
(from the overall point of view onto the complete installation with different RTEs involved). 

4.10.9 Safe strictly monotonous clock 

The RTE shall provide a safe monotonous clock for cyclic triggering of the application replicas. Note: 
If an installation (e.g., Frankfurt interlocking) consists of several different RTE solutions, each RTE 
solution provides its own monotonous clock for its application replicas. 

There is no synchronization of the clocks between different RTE solutions. 

This needs to be considered in terms of the time behavior of the applications. It is not possible to 
synchronize the application running cycles of different RTE solutions. 

4.10.10 Example: Application in 2oo3 mode with six replicas for increased availability 

The situation of this example is as follows (as shown in Figure 27 below): 

• One APS application APS-1 is running in six replicas [1] to [6]. 

• The replicas are distributed on the hardware devices HW-1 to HW-3 for the 2oo3 principle 
(safety and availability). 

• Each hardware device has two replicas (availability). 

• The communication to external systems is redundant:  
Channel A is provided by the RTE on HW-1, channel B is provided by the RTE on HW-2. 

• The third hardware is for availability on a hardware-device level.  
If one hardware device fails, the system can continue to run safely on the remaining two 
hardware devices. 

• The second replica on each hardware is for increased availability within one hardware.  
If one replica fails, the other replica continues to run, and the system continues to run in 2oo3 
mode on a hardware level. 
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Figure 27 Example: 2oo3 principle with six application replicas 

The view into the RTE for this exemplary use case is as follows: 

The RTE parts (voter, protocol gateway) are running synchronously on each hardware device. 

For redundant communication to external systems, the protocol gateways on two hardware devices 
are "active"; the third protocol gateway on HW-3 is required for safe running in case of reduced 
availability (e.g., if HW-1 fails). 

 

 

Figure 28 RTE view for 2oo3 principle with six application replicas 

4.10.10.1 Scenario 1: hardware failure in 2oo3 mode with six replicas 

 

Figure 29 Availability scenario 1: hardware failure 

If one COTS hardware fails completely, the application is running in 2oo2 mode with four replicas. 
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It depends on the failed hardware if communication to the connected systems is affected or not, i.e., if 
communication is still redundant or with reduced availability. 

4.10.10.2 Scenario 2: replica failure in 2oo3 mode with six replicas 

 

Figure 30 Availability scenario 2: replica failure 

 

If one replica fails, the application is running in 2oo3 mode with five replicas. 

The communication to external systems is not affected (is still redundant). 

4.10.10.3 Scenario 3: hardware failure and replica failure in 2oo3 mode with six replicas 

 

Figure 31 Availability scenario 3: several failures, system without further redundancy 

The application is running in 2oo2 mode with redundant communication (depending on which 
hardware has failed). 
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4.10.11 Example: APS application in 2x2oo2 mode with eight replicas for increased availability 

 

Figure 32 Example: 2x2oo2 principle with eight application replicas 

The application is running in 2x2oo2 mode with eight replicas.  

Each 2oo2 pair is responsible for one channel of the redundant communication [A/B]. 

4.11 Geographical redundancy 

Railway systems are part the critical infrastructure, and they must be protected against failure. There 
are several events which may lead to a failure of a complete data center site, such as fire, natural 
disasters (flood, storm), or even terrorist attacks. Geographical redundancy can limit the effect of such 
events and ensure continuous operation. 

Redundancy is an essential principle for implementing high-availability architectures and IT 
infrastructures. Redundancy generally refers to the multiple presence of similar objects. These can be 
technical components, information, services, or even personnel. In high-availability environments, 
redundancy is usually characterized by the fact that more resources are available than are necessary 
to fulfill the specified functions of an IT system. Redundancy is not only important for availability; 
composite fail-safety is also one of the three fail-safety principles of EN 50129. 

Composite fail-safety is already applied to the desired SIL4 platform in local scope: Applications like 
APS are made of equal, redundant replicas which form e.g., 2x2oo2 or 2oo3 fail-safe systems. The 
basic idea of geographical redundancy can be based on this approach and applies the same pattern. 

 

Figure 33 Example: 2x2oo2 principle with geographical redundancy by two sites 
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4.11.1 Instant "switchover" 

By using this design, the whole system remains 100% in operation even if one site fails (the same 
case as with local redundancy where one replica fails). "Switchover" time is zero; it is even wrong to 
speak of switchover here: 

• Replicas are synchronized at every point in time. 

• Replicas at the non-failed site continue their operation; the RTE continues to vote (less, but 
enough) replicated results. 

• Non-failed network links to/from decentralized systems continue to link; the RTE continues to 
vote (less, but enough) replicated input/output messages. 

4.11.2 System integrity over all involved computing nodes 

The individual RTE instances and application replicas of the system – running on separate computing 
nodes with geographical redundancy – need to be consistent regarding the installed versions, i.e., 
each RTE instance needs to be the same version, each application replica needs to be the same 
version.  

Changing the RTE and/or application replicas for maintenance purposes (e.g., update to a new 
software version) needs to be done for the complete system at the same time. It is not possible (from 
a technical point of view) and allowed (from a safety point of view) to have different versions of RTE 
and/or application replicas running together as one system. 

For safety purposes, the RTE shall ensure by implemented check mechanism that a failure in 
handling of the update rules cannot lead to an inconsistent system running with an unauthorized 
combination of different versions of RTE and/or application replicas. Such a failure in update 
management shall be identified by the RTE in a safe manner. 

For each maintenance scenario regarding software/data of the RTE and/or application, all involved 
instances of RTE and application replicas need to be considered; geographical redundancy does not 
mean that system changes in software/data can be done "on the fly" in a hot-running SIL4 system. 

4.11.3 Network parameters 

With a remote connection, network parameters (e.g., latency, packet failure rate, bandwidth) must 
fulfill the same quality criteria as in the local case because all platform-relevant processes, e.g., 
voting, must communicate not only locally but also remotely. This requires a performant backbone 
network. 

4.11.4 Residual availability (replicas) 

A geographically distributed system is available with the same rate as a system with the same 
number of replicas at a local site (not considering remote network availability). In both cases, a failed 
replica will not let the whole system fail, but the system has a reduced residual availability. This is 
tolerable for a local system because repair of a failed replica is a manageable process (spare stock), 
and the time to repair is relatively short, so the temporary decrease in availability is acceptable.  

With geographical redundancy, if a failure was caused by a failure of a complete site, this situation 
cannot be remedied in the short term, as it takes longer (but is less likely). Therefore, each 
geographical site needs to be equipped in a manner that it fulfills the availability requirements without 
the failed site. In other words: whereas with local redundancy a 2x2oo2 (or 2oo3) system is sufficient, 
geographical redundancy requires more replicas considering the added decentralized site(s): for the 
case of two sites two times 2x2oo2 or two times 2oo3. 

4.11.5 Residual availability (remote communication) 

Decentralized systems have redundant network links and disjunct routes to platform-hosted 
applications like APS. Even if the usual two links to a locally redundant system would – with 
geographical redundancy with two sites – simply be torn apart (used as one for each site), this would 
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still fulfill the required redundancy from a global, geographical redundancy point of view. But again, if 
one site fails, there is no more redundancy for communication, so the residual availability is reduced 
below the accepted value. With the same reasoning as for the residual replica availability above, this 
also entails increasing the link redundancy to include the number of geographical sites. Most railway 
protocols (e.g., RaSTA, ETCS Subset-098) are already prepared such that the communication stacks 
can be configured for more links, transparent to the application(s) using them. 

4.11.6 Number of sites 

Building geographical redundancy from two sites is the minimum, yet sufficient configuration. 

Also, three sites could be beneficial, as they mean fewer total replicas (example: two sites with 
2x2oo2 systems = eight replicas in total versus three sites with 2oo2 systems = six replicas in total). 
They still fulfill the residual availability requirement. Whether to decide for two-site or three-site 
redundancy will depend on considerations such as: 

• costs per replica per site 

• costs per redundant link per site 

• costs per data center per site 

• staff availability/distribution 

• manageability of the split-brain problem per site (see section 4.11.7 below) 

4.11.7 Split brain 

Geographical redundancy has another challenge: With a remote connection, it must be considered 
that each site is working correctly but their connection, needed for synchronization, fails. The sites 
can detect this, but without further knowledge, it is not clear which site takes over the master role, and 
as the two sites can no longer communicate, they cannot perform a master election. But this is 
required because all decentralized systems are still connected to the sites and will accept and answer 
requests. This case is called "split brain". 

As a result, such a case can lead to an unsafe situation overall. For a two-site system, there is no 
system-inherent way to solve the split-brain problem (no majority). An external solution will be 
required: safely detect the situation (connection loss) and perform an external master election. The 
detection and solution are time-critical to both avoid an unsafe situation and minimize the operational 
impact. This can be solved by a manual intervention, or an automatic intervention by another safe 
system. An external solution needs to be placed on a third location to achieve the required availability 
in case of an outage of the two-site system. 

A three-site system can solve this situation by its asymmetric design: The isolated single site can 
detect the situation and would automatically disapprove itself. The two sites still connected can 
perform a master election. Note, however, that a subsequent failure of the communication between 
the two remaining sites would mean the automatic disapproval of the remaining system as again the 
split-brain problem would occur or would require the same complex solution as in a two-site system. 

4.12 Security architecture 

The security architecture defines a common security infrastructure, also called shared security 
services. These shared security services were defined in the EU research project X2Rail-3 in work 
package Cyber Security (see D8.2-2 - Generic cybersecurity architecture and shared security services 
– publication pending) and are based on the international standard IEC 62443 [10]. 

Below figure shows the shared security services of X2Rail and their respective relations. In particular 
it shows the central rail automation security zone, the back-office security service and adjacent 
systems, with central and trackside equipment. 



Page: 57 / 109 

 

Figure 34 Shared security services and relations to trackside infrastructure 

For high availability of the shared security services, it is recommended to install multiple instances of 
key security services in geographically separated locations. These geographically redundant 
installations can be co-located with the geographically redundant SIL4 data centers. A total failure of 
one data center should not affect the functionality of the shared security services for components in 
other data centers. In that case the security services are provided by another data center. 

The shared security services are defined by the following mandatory and highly recommended 
services: 

 
Mandatory services: 

• System-wide time service (TIME) 

• Central logging (LOG) 

• Identity and Access Management (IAM) 

• Backup (BKP) 

• Asset inventory (INV) 

• Intrusion detection/continuous security monitoring (IDS) 

• Security Incident and Event Management (SIEM) 

 

Highly recommended services: 

• Public Key Management (PKI) 

• SW Update (SWU) 
 

The following chapters describe the shared security services briefly (excerpt from X2Rail-3 D8.2-2 
Generic cybersecurity architecture and shared security services – publication pending): 

4.12.1 System-wide time service (TIME) 

A system-wide synchronized time is needed to analyze audit logs (e.g., by a SIEM system), backup 
and restore functions and to evaluate the validity of certificates. 
System-wide time synchronization is achieved by a central time service that acts as a common time 
source for all components requiring time synchronization (e.g., signaling, security, networking 
components). 
The system-wide time synchronization function typically can synchronize its time with an upstream 
time source (e.g., from a customer time source or a global navigation satellite system). This upstream 
time source could be behind a demilitarized zone (DMZ). 

The selected protocol of X2Rail-3 for time synchronization is NTPv4 (RFC 5905). This is also 
applicable for systems deployed in data centers. 

It is typically implemented on the operating system level of the RTE and provided to applications via 
operating system level APIs. 
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4.12.2 Central log service (LOG) 

A central log service is a service that collects audit records (logs) from all components which generate 
logs and compiles them in a system-wide, time-correlated audit trail. 
CR 2.8 of IEC 62443-4-2 mandates that security-relevant logs are generated for the following 
categories: access control, request errors, control system events, backup and restore events, 
configuration changes and audit log events. 

Note: 
There are different log content and log destinations: 

• Security related logs: content as mentioned above, destination: SIEM 

• Continuous monitoring logs: content logs from IDS (HIDS, NIDS), destination: SIEM 
 

The central logging service can provide the time-correlated audit trail to other services (e.g., 
diagnostic or SIEM systems). 

The selected protocol of X2Rail-3 for central logging is syslog-ng / syslog over TLS (RFC 5425). This 
is also applicable for systems deployed in data centers. 

It is typically implemented on the operating system level of the RTE and provided to applications via 
operating system level APIs. 

4.12.3 Security Incident and Event Management (SIEM) 

A Security Incident and Event Management (SIEM) service provides real-time analysis of security 
alerts generated from the system-wide audit log (including logs from network devices e.g., firewalls, 
routers and IDS). 

A SIEM service can be hosted in the security operation center of the railway operator or outsourced to 
another party. Therefore, the rail automation solution should send the security related logs to the 
SIEM service. This is realized through an interface of the signaling log service. 

The selected protocol of X2Rail-3 from LOG to SIEM is syslog-ng / syslog over TLS (RFC 5425). This 
is also applicable for systems deployed in data centers. 

This interface is solely implemented through the central log service. 

4.12.4 Public Key Management (PKI) 

A public key infrastructure is used to create, manage, distribute, use, store and revoke digital 
certificates. Digital certificates in combination with a PKI facilitates the authentication of 
communication partners and the cryptographic protection of their network communication. 

Examples for PKI usage include but are not limited to: 

• KMC online key distribution (UNISIG 137) 
Device to device communication authentication 
Human user authentication (e.g., for diagnostic access) 

• A public key management service is required to automate the process for certificate 
management and make use of a product supplier or asset owner “root of trust”. 

A PKI consists typically of a (local) registration authority (RA/LRA) and a certificate authority (CA). If a 
PKI already exists at a railway operators' site, the SIL4 Data Centers’ PKI shall be able to integrate 
with that existing PKI. 

The operation of a PKI, especially of a certificate authority, shall be performed according to commonly 
accepted best practices (refer to [9]). A common requirement for the central PKI installation is SL 3 or 
SL 4 depending on the respective requirements. 

A PKI is not explicitly required by IEC 62443-3-3 or 4-2, although key management for larger systems 
(e.g., hundreds of components) is only manageable with an automated key management system such 
as a PKI. 

Therefore, the conclusion is that a PKI shall be part of the shared security services. 
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The selected protocol of X2Rail-3 for certificate management is CMP (RFC 4210). This is also 
applicable for systems deployed in data centers. 

It is typically implemented on the security layer of the RTE and provided to applications via operating 
system level APIs. 

4.12.5 Identity and Access Management (IAM) 

An Identity and Access Management (IAM) service manages accounts of human and possibly 
technical users (e.g., services, processes, machines), the relationship of accounts to groups, and the 
assignment of authorizations. 

A central IAM service reliefs single components from implementing account, identifier and 
authenticator management. An IAM service could also provide single sign-on as an additional 
functionality. 

In larger installations, the IAM service can be part of a larger federated system. Identities can be 
located and managed in different enterprise and security domains; however, authentication is realized 
using common identifiers. The central IAM service for the SIL4 Data Center should therefore be able 
to integrate into a federated IAM system (e.g., a corporate directory). 

A local IAM for the SIL4 Data Center would not integrate into a corporate directory. Users need then 
to be managed on both systems (no synchronization as with a federated IAM). 

IAM services for signaling use cases should be restricted to interactive access only (e.g., for 
diagnostic or maintenance access) and should not adversely impact essential functions (e.g., access 
to train control user interfaces). 

Note: 
It is advisable, as a fallback, to have access to a local management system, even when the central 
IAM service is not reachable. 

There are two main scenarios: token-based access and token-less access. 

Token-based systems use a single sign-on services where a (human) authenticates and obtains a 
token to access the resource. This is widely used for web-based user interface access (e.g., web 
applications using single sign-on). 

Token-less access is used where tokens are not (yet) supported (e.g., current OPC UA servers). In 
order to support unified account and identifier management without tokens, the resource (e.g., an 
OPC UA server of a signaling device) needs to contact the shared security service IAM to complete 
the authentication and authorization e.g., by requesting the permissions of the authenticated user 
from the IAM. 

The selected protocol of X2Rail-3 for identity and access management (token-based) is OAuth 2.0 
using OpenID Connect and SAML 2.0. This is also applicable for systems deployed in data centers. 

It is typically implemented for graphical user interfaces to enable single sign-on. 

The selected protocol of X2Rail-3 for identity and access management (token-less) is SCIMv2 over 
TLS (RFC 7655). This is also applicable for systems deployed in data centers. 

It is typically implemented on the security layer of the RTE and provided to applications via operating 
system level APIs. 

4.12.6 Software update 

Regular security patches are required to fix vulnerabilities and keep the installed system in a secure 
state. The IEC 62443-3-3 and -4-2 standards do not define the upgrade procedure (e.g., local or from 
remote). Therefore, updating components of an installed system can be done manually for each 
component. However, a centralized update service increases the reliability and reduces the time for 
updating a system drastically. 

Although software update is technically feasible, the certification of a safety-related system poses 
several process challenges that need to be addressed with all stakeholders (manufacturers, 
operators, and assessors).  
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The selected protocols of X2Rail-3 for remote software update are OPC UA SC (for controlling 
software update process) and HTTPS (for download of software packages). These are also applicable 
for the SIL4 Data Center to allow a controlled and coordinated software update and are typically 
implemented on the security layer of the RTE and provided to applications via operating system level 
APIs. 

4.12.7 Backup 

A backup service stores the required software and its configuration of devices. The stored artefacts 
are used to recover components after a disruption or failure. A centralized, automated backup service 
simplifies the tasks for control system backup, backup verification, backup automation and recovery 
and reconstitution. 

There are several options for a backup strategy. The scope of a backup should contain all data that is 
needed to restore a rail automation solution after a security incident (e.g., resulting in compromised 
devices). 

Therefore, all data (software and configuration) of all devices involved should be part of the backup. 

A backup should be created after every change (software or configuration). It is advisable to practice 
restoration of devices from backup during maintenance intervals. 

For higher availability and increased security, the backup data can be kept on offline media (and in a 
different location). These measures including the retention policy should be aligned with the railway 
operator’s corporate IT strategy. 

Backup data has to be integrity protected and ownership authenticated. 

Encryption of backup data is needed only in case it contains confidential or human user specific data. 

For the integrity, authentication and encryption mechanism, the used keys should use the public key 
infrastructure of the SIL4 Data Center. 

The selected protocol of X2Rail-3 for backup is rsync over SSH. This is also applicable for systems 
deployed in data centers. 

It is typically implemented on the operating system layer of the RTE and provided to applications via 
operating system level APIs (e.g., to restore). 

4.12.8 Asset inventory 

An asset inventory service stores information of the installed components of a rail automation system 
for asset management. 

Typically, the following component specific data is stored in an asset inventory system: serial number, 
hardware versions, software versions, configuration version, installation location. 

Note: 
The asset information should be also available for SIEM operator (either by co-location of the two 
services or by an interface from SIEM to INV) 

The selected protocol of X2Rail-3 for asset inventory is OPC UA SC. This is also applicable for 
systems deployed in data centers. 

It is typically implemented on the security layer of the RTE and provided to applications via operating 
system level APIs. 

4.12.9 Intrusion detection / continuous monitoring 

The intrusion detection / continuous monitoring service detects, characterizes and reports security 
breaches. This can be realized by collecting essential information from a rail automation system at 
strategic locations. Typical implementations include network intrusion detection systems, which 
analyze the network traffic from various areas of the communication network. 

If abnormal behavior is detected, an alarm shall be generated and sent to the SIEM service. 
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The selected protocol of X2rail-3 for interfacing from the network tap with intrusion detection is Pcap-
NG over TLS. This is also applicable for systems deployed in data centers. 

This interface is implemented in network taps. 

4.12.10 Other recommendations from X2Rail-3 cyber security working group 

Protection from malicious code can be achieved through several different technical solutions: 
antivirus, whitelisting and anomaly detection. 

X2Rail-3 recommends using whitelisting for protection from malicious code for rail automation devices 
(refer to chapter 5.10.1 of D8.2-2 of X2Rail-3). 

X2Rail-3 states that antivirus solutions for rail automation products are not the right choice for 
protection from malicious code. Rail automation devices are rather static in nature, and therefore 
frequent signature updates have a negative impact on the availability of safety systems. The 
likelihood of false positives can impact safety functions. Furthermore, antivirus solutions are 
computing-resource intensive and may lead to resource exhaustion and additionally impact safety 
functions). 
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5 Integration and testing 
Integration and testing follow a gradual approach, starting from a small number of components to a 
larger number of components. This, of course, includes hardware and software. The environment of 
the components under test needs to be simulated in some way, if components are not available or it is 
not useful to use real components (e.g., object controllers, trains). Integration needs to be repeated if 
changes are made to individual parts. 

In today's legacy systems, the responsibility for the generic overall system and specific installation 
comes from a single source, because it is delivered as one complete package by one single supplier. 
All necessary integrations of all the individually assessed modular parts (safety layer, business 
application, COTS hardware) are integrated into a generic topology-independent system with generic 
type approval. For a specific customer installation, an approved generic system is provided together 
with installation-specific approved engineering data (for the topology). Involved subcontractors (e.g., 
for developing individual software parts) are in the responsibility of the legacy vendor and are not 
visible to the customer.  

Within the modular RCA approach, a defined "safe computing platform" aims to be open and will allow 
multiple vendors to run their safe computing applications on it. This means having multiple safety-
related products coming from multiple vendors. 

This is a major change in the responsibility for integration testing: it imposes that the overall 
integration and testing responsibility will move to the infrastructure manager with an increased 
quantity as the granularity has also increased: more, smaller applications must be integrated. This will 
likely impose a change in the integration and test processes and their extent as more work will have 
to be carried out by the infrastructure manager that was previously done by the application vendors. 
This situation as such is not new (compare interlocking application and RBC application from different 
vendors). 

The RCA architecture is designed to be topology independent. This might simplify the integration of 
the overall installation (i.e., together with the specific engineering data for one site), but on the other 
hand, it will most likely increase the integration complexity of the preceding layers.  

This chapter provides a high-level overview of the possible integration steps in a modular system 
architecture. It elaborates the integration dependencies, i.e., which integration steps are necessary 
depending on the specific changed component. A change within an individual system part might imply 
further actions, definition of additional test cases, etc. that are not covered in this report in detail. 

5.1 Generic type approval of legacy systems 

To achieve a generic type approval for generic customer installation variants, legacy system vendors 
like SMO have established an overall process for integration and testing. The main principle here is 
the clear differentiation and separation of the defined generic system variant that can be re-used in all 
installations of a customer and the specific engineering data sets for the individual installations of the 
customer. This corresponds to the separation of generic software development and application data 
development as specified in EN 50128. 

Important conditions for this lean process for the approval of specific installations are: 

• The functionality and external interfaces of the system variant must be clearly defined. 

• The functionality of the system must cover 100% of the customer requirements (to enable the 
re-use in every installation). 

• The approval for the system variant must be a "type approval". 

 

The main objective of this approach is a very lean and efficient process for the usage of the approved 
generic system variant in customer installations. 

Without a type approval for the generic system for a customer, intensive testing is necessary for each 
customer installation, generating additional effort. Another effect is that re-use possible between 
different installations becomes practically impossible (functional interlocking test cases for the 
Frankfurt interlocking cannot easily be re-used for functional testing of the Berlin interlocking). 
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For legacy systems, this situation is solved by each legacy vendor using their best method, 
transparent to the customer.  
The legacy vendor provides a complete package for a customer installation; vendor-internal 
processes for the handling of system tests and data tests are not relevant for the customer. 

 

Figure 35 System test and data test for legacy solutions 

For additional details, see section 5.6.  

5.2 Installation-related system variants" (RCA) versus "generic system" 

The basic condition to achieve a type approval for a generic system would be the definition of a 
system variant which can be used in exactly the same way (without any change in the system variant) 
in a series of installations. 

The benefit of a generic system variant with a generic type approval is that all system-related 
activities (overall integration, safety case, risk analysis, RAMS) need to be done only once and then 
this approved system variant can be used in a lean way for a series of installations. 

5.2.1 Today’s situation 

Figure 36 below shows an example of the situation for a generic system which is used in two 
installations. 

• The functional scope of the system is growing with each installation from (F1+F2) to 
(F1+F2+F3), the system covers all needed functionalities. 

• The vendor situation is the same for installation 1 and installation 2. 

• A generic "Testbahnhof" (test station) is possible to achieve a generic type approval for the 
generic system. The "Testbahnhof" is growing based on system functionality. 

• Functional enhancement of the system (e.g., adding of functionality F3) is available for all 
installations; it would be easily possible to update installation 1 with this functionality F3. 

• Bug fixing in the system is available for all installations (one fix can be re-used easily for 
several installations without the need for new integration). 
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Figure 36 System integration and data testing 

5.2.2 New situation with vendor multiplicity 

RCA is defining a more fine-grained architecture: classical safety logic-related products like 
interlocking (route protection) and RBC (train protection) will be replaced by a composition of building 
blocks (RCA components). That will bring new challenges for type approvals as additional types will 
be added to the two current types interlocking and RBC. 

Furthermore, the multiplicity of combinations will increase (different combinations of APS applications 
running on different RTE solutions, provided by different vendors). This means each such 
combination must be integrated and certified. 

Figure 37 below shows an example of the situation for two combinations (each with a simplified 
content of one RTE and two applications) with differences in:  

• the application vendors involved (APP-2 by vendor c and vendor d) 

• the RTE vendors involved (with different safety principles (RTE with 2x2oo2 versus 2oo3) 

 

Due to the differences in both combinations, it is not easy to use a kind of generic "Testbahnhof" for 
both integrations, which means each integration must be done individually in its own context of the 
specific combination with reduced re-use of test environment and test cases. 

If APP-1 is changed (e.g., due to bug fixing or functional enhancement), it needs to be integrated both 
in system variant 1 and system variant 2. 

The approach of "flexibility for each installation" is therefore quite the opposite of the intention of 
"generic type approval for a generic system variant". The individual modular parts (RTEs and 
applications) can of course be re-used for several installations, but from an overall system integration 
point of view re-use between different installations is limited. 
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Figure 37 System variants with different vendors involved 

5.2.3 Conclusion 

The effort for achieving a "type approval for a generic system" (with 100% scope covered by a 
“Testbahnhof”) is a worthwhile investment if the approved generic system is re-used sufficiently often 
without a change in a series of installations. 

So, it must be evaluated and decided from a cost perspective, whether it is better to: 

• keep the vendor situation stable (restricted to a minimum of combinations) to achieve a stable 
system definition with stable processes and a test environment for integration and re-use of a 
series of installations 

• accept vendor multiplicity and therefore increased integration effort because there is limited 
re-use between different installations 
To restrict these effects of multiplicity, a small number of combinations could be chosen right 
from the beginning. 

• establish standardized test procedures and environments which allow for flexible vendor 
configurations at limited additional integration effort 

 

For further details in the context of "automated overall integration testing of a system variant", see 
section 5.8. 

5.3 Vertical and horizontal integrations 

Typically, the first integration steps are the integrations of the individual layers COTS hardware / 
virtualization / RTE / application: 

• virtualization integrated with the hardware computing node → virtual computing node 

• RTE integrated with the virtual computing node → safe computing platform 

• application (software + data) integrated with the safe computing platform → installation (e.g., 
Frankfurt interlocking) 

 

The integration of these layers is called vertical integration in this document. 

After successful vertical integration of an application on the safe computing platform, parallel 
execution and communication between the different applications are integrated and tested. This 
integration is called horizontal integration in this document. 

Figure 38 below shows the different kinds of vertical and horizontal integrations in the different 
systems (RCA/legacy). 
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The RCA system in the example consists of: 

• three applications (APP-1/2/3) each running within an own RTE-1/2/3 

• three applications (APP-4/5/6) running together as bundle on RTE-4 

 

Figure 38 Overview – vertical and horizontal integrations 

Note:  
In the current EULYNX architecture, vertical integration (application running on safety layer and 
hardware) is completely the responsibility of the vendors of the safety logic and object controllers and 
transparent for the customer. Horizontal integration between the safety logic and object controllers 
must be done "across the participating vendors". 

All these vertical and horizontal integrations are indispensable for the commissioning of an 
installation. In the context of maintenance, the need for integration depends on the specific change. 

Some integrations are safety-relevant and the basis for validation. Others are not safety-relevant (but 
needed to ensure the required availability) and the basis for qualification of non-safety-relevant parts 
in the installation. 

New or changed parts of an installation may only be used if the new part has been integrated with the 
relevant other parts.   

Only integrated combinations of all the involved parts may run in an installation. 

Example:  
It is not allowed to use a new version of the virtualization solution if it is not integrated before with the 
affected installations and the used hardware computing nodes. 

An integration is necessary for every change to avoid an unexpected impact on availability – a non-
integrated piece of software or hardware may never be installed in a running rail product with full 
safety responsibility. 

The way forward is not to skip integration as such but to define the best and most efficient way for 
lean and fully automated integration of any change. 

5.3.1 Integrations for the scenario "new COTS hardware" 

Each COTS hardware version that will be used needs to be qualified for all installations in which this 
new hardware version is to be used. 

For this hardware qualification, it must be shown that all the software layers of the installation are 
running as expected on this new hardware version. 

The main scope of this qualification is to test performance, time behavior, and reaction time. 
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Particularly, some functions close to the hardware (e.g., Trusted Platform Module access for IT 
security, update of BIOS) need to be integrated. 

Figure 39 below shows the required integrations when changing the hardware (highlighted yellow). 

 

Figure 39 Integrations for change scenario “new COTS hardware” 

5.3.2 Integrations for the scenario "new load OS" 

Each version of the load operating system needs to be integrated on all used hardware computing 
nodes and all installations.  

The goal is to have a common solution on all used hardware nodes to handle hardware spares in the 
context of remote installation and update. 

If there is a new load operating system version (for the initial upload of first software packages), this 
load operating system needs to be integrated with the COTS hardware and all the software layers 
involved in the context of "installation and update of software on the hardware computing nodes." This 
is a two-step approach, in which the first step is the update of the load operating system itself, and the 
second step is the update of the upper-layer (e.g., RTE, application) and lower-layer software 
components (e.g., virtualization, BIOS) by the load operating system. 

The load operating system needs to be installed (and maintained) even on inactive hardware spare 
parts to allow remote installation and update later, when the spare part will be used. 

Figure 40 below shows the required integrations when changing the load operating system 
(highlighted yellow). 
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Figure 40 Integrations for scenario “new load OS” 

5.3.3 Integrations for the scenario "new virtualization" 

Each version of the virtualization solution needs to be integrated on all used hardware computing 
nodes and all installations where this new virtualization solution is to be used. 
The goal is to have a consistent version of the virtualization solution version within the entire data 
center. This means that a new version is to be gradually qualified and installed for all existing 
(running) installations. 
For this software qualification, it must be shown that all the software layers of all installations running 
within the virtualization are running as expected on this new virtualization version. 
The main scope of this qualification is to test performance, time behavior, and reaction time. 
 

Note: 
Whether performance testing by the virtualization is sufficient, or if additional performance testing by 
the installations themselves is required, is yet to be clarified. The goal is to ensure that the 
performance and time behavior of the COTS platform are sufficient for the installations running on it. 

Figure 41 below shows the required integrations when changing the virtualization (highlighted yellow). 

 

Figure 41 Integrations for scenario “new virtualization” 
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5.3.4 Integrations for the scenario "new basic OS of RTE" 

A new basic operating system leads to the creation of a new version of the RTE. The product-internal 
integration of the RTE’s basic operating system with the RTE safety layer is the responsibility of the 
RTE vendor. 
The new (re-validated) RTE version needs to be integrated with the virtual computing node (vertical 
integration) and with the neighboring RTEs (horizontal integration). 
The affected application APP-3 needs to be integrated with the new version of RTE-3 (vertical 
integration). 
The need for integration with infrastructure components depends on the specific change in the new 
RTE version. 

Figure 42 below shows the required integrations when changing RTE-3’s basic operating system 
(highlighted yellow). 

 

 

Figure 42 Integrations for scenario “new basic OS of RTE“ 

5.3.5 Integrations for the scenario "new safety layer of RTE" 

A new safety layer leads to the creation of a new version of the RTE. The product-internal integration 
of the RTE’s safety layer with the RTE’s basic operating system is the responsibility of the RTE 
vendor. 
The new (re-validated) RTE version needs to be integrated with the virtual computing node (vertical 
integration) and with the neighboring RTEs (horizontal integration). 
The affected application APP-3 needs to be integrated with the new version of RTE-3 (vertical 
integration). 
The need for integration with infrastructure components depends on the specific change in the new 
RTE version. 

Figure 43 below shows the required integrations when changing the RTE-3’s safety layer (highlighted 
in yellow). 
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Figure 43 Integrations for scenario “new safety layer of RTE” 

5.3.6 Integrations for the scenario "new RCA application" 

A new version of an RCA application software leads to the creation of a new version of the 
application. The product-internal integration of the application software with the application data is the 
responsibility of the application vendor. 
The new (re-validated) application version needs to be integrated with the RTE running on the virtual 
computing node (vertical integration) and with the neighboring applications (horizontal integration). 
The need for integration with infrastructure components depends on the specific change in the new 
application software version. 

Figure 44 below shows the required integrations when changing the RCA application APP-3 
(highlighted yellow). 

 

 

Figure 44 Integrations for scenario “new RCA application” 

5.3.7 Integrations for the scenario "new safety layer of RTE with application bundle" 

In this case, the modular applications APP-4 / APP-5 / APP-6 are running together in an application 
bundle". Under this circumstance, the vertical integration of the individual modular applications does 
not yield a clear result about the application behavior, as integration with the RTE is does not apply to 
the complete application replica. Vertical integration with the RTE and horizontal integration of the 



 

Page: 71 / 109 

whole bundle needs to be done together with all involved applications (of the bundle). To that end, all 
suppliers (of RTE-4 and all applications APP-4 / APP-5 / APP-6) must be involved. 

Figure 45 below shows the required integrations when changing RTE-4’s safety layer (highlighted 
yellow). 

 

 

Figure 45 Integrations for scenario “new safety layer of RTE with application bundle” 

5.3.8 Integrations for the scenario "new RCA application within application bundle" 

A new version of an RCA application software leads to the creation of a new version of the 
application. The product-internal integration of the application software with the application data is the 
responsibility of the application vendor. 
The new (re-validated) application version needs to be integrated with the RTE running on the virtual 
computing node (vertical integration) and with the neighboring applications running within the same 
bundle (horizontal integration) and the neighboring applications running in separated RTEs. 
The need for integration with infrastructure components depends on the specific change in the new 
application software version. 

Figure 46 below shows the required integrations when changing the RCA application APP-5 
(highlighted yellow). 

 

 

Figure 46 Integrations for scenario “new RCA application within application bundle” 
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5.3.9 Integrations for the scenario "new legacy safety layer" 

A new legacy safety layer leads to the creation of a new version of the legacy system. The product-
internal integration of the legacy safety layer with the other sub-products of the legacy system is the 
responsibility of the vendor of the legacy system. 
The new (re-validated) legacy system version needs to be integrated with the virtual computing node 
(vertical integration). 

Figure 47 below shows the required integrations when changing the legacy safety layer (highlighted 
yellow). 

 

 

Figure 47 Integrations for scenario “new legacy safety layer” 

5.3.10 Integration of infrastructure components (installation and update, IT security, 
diagnostics) 

The dependencies between the infrastructure components and the individual parts of the running 
installations have to be considered but were not scope of this collaboration. 

5.4 Security aspects of system changes  

The integrity of a rail automation system is required to safeguard the correct operation of all safety 
functions. IEC 62443-4-2 [10] requires integrity and authenticity checks on software, configuration, 
and other information as well as reporting on integrity and authenticity violations. 

This is typically achieved by digital signature for software and configurations. Checking on integrity 
and authenticity is typically realized by a secure boot chain, where each layer verifies the next layer 
before executing or using it. 

The handling of signatures and verification keys must be considered in the design of the RTE, 
supporting multiple applications from potentially various different vendors. 

 

Security verification and validation:  

Software-based systems are particularly subject to vulnerabilities being discovered and potentially 
exploited. Additionally, the configuration of parts of the system can lead to security risks (unnecessary 
ports / services activated, unsecure configuration). 

Therefore, security verification and validation steps are required before software can be put into 
operation. 

Best practices for security verification and validation for rail automation systems are selected in the 
X2Rail-3 work package 9. Basis for these activities are the requirements of Practice 5 from IEC 
62443-4-1 (Secure product development lifecycle requirements). 
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However, IEC 62443-4-1 provides only high-level requirements for security verification and validation. 
This encompasses test activities such as security requirements testing, threat mitigation testing, 
abuse case testing, static code analysis, attack surface analysis, known vulnerability scanning, 
software composition analysis and penetration testing, and the independence of testers. 

Especially the scope and depth of these activities are not defined. Work package 9 of X2Rail-3 is 
defining the expected level of security testing and validation activities for rail automation domain.  

A corresponding publication of the recommendations regarding security verification and validation is 
expected in Fall 2021. 

5.5 Integration catalogue 

Due to the large number of possible integration activities, central capturing of all the processed 
integration activities (vertical and horizontal) regarding all modular parts of the data center in a sort of 
"catalogue" is required. 

The integration catalogue serves as a central basis for each maintenance activity in the context of 
software installation, software update, or hardware replacement. To have a clear view on which 
combinations of versions of the involved parts are integrated and therefore allowed to be used must 
be clearly defined. If for example a new COTS hardware version is to be used as a spare part in 
installations that are already running, the installations in which the new COTS hardware spare part 
can be used (because already integrated) or cannot be used (if not yet integrated) must be indicated 
for further reference. 

This catalogue must be maintained by the infrastructure manager who is responsible for all the 
integration activities and associated validation/assessment processes. 

The integration catalogue is a collection of the complete information on all performed integrations. 
The input data is provided by: 

• validation processes for safety-relevant integrations (e.g., integration of App-X running on 
RTE-Y) 

• qualification (of COTS hardware, load operating system, virtualization) for non-safety-
relevant integrations (e.g., integration of the virtualization solution on the COTS hardware) 

5.6 SMO experiences in the context of "integration” 

The integration of individually assessed modular parts with a generic safety platform and generic 
applications to achieve a generic overall system is a process that has been established for decades at 
SMO and in a comparable way at other companies/vendors. 

SMO example:  
The same generic Simis ECC safety platform is used for several applications: interlocking for DB, 
RBC for DB, axle counter for DB, level crossing for DB. The same ECC works in similar applications 
(running on the same ECC API) in Switzerland, Austria, Netherlands, Belgium, Norway, Hungary, etc. 

The required integration processes for this case (individually assessed modular parts for different use 
cases) have been improved continuously, driven by experiences regarding integration dependencies, 
synergies in tool usage (test system, simulations, engineering tool) and the certification process, to 
achieve a generic type approval for a generic system (e.g., interlocking system for DB). 

The basic points for an efficient overall integration process are: 

• The responsible roles require knowledge and competencies to be capable of acting 
responsibly. 

• The scope of responsibility must be precisely defined to be capable of responsibility. 

• All integration activities must be coordinated and parallelized in the best and most meaningful 
way to handle bug fixes as soon as possible (late repairs are cost- and time-intensive). 

• Complexity (generic software) must be separated in the best way possible from the customer 
installation data; the major goal is a generic type approval for the complex generic system 
used in the same way for several installations with lean data testing for specific installations. 

• The generic test environment "Testbahnhof" (test station) must be used as a basis for 
automated and complete (100% functionality and performance) system testing. 
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• A harmonized toolchain must be used as a common basis for testing (system test, data test). 

• A harmonized toolchain must be used as a common basis for data preparation 
("Testbahnhof", customer installations). 

 

The aspects listed below are some refined or additional findings and determinations worth to point out 
for further clarification in the context of overall integration in a modular RCA approach: 

1. The safety layer is a generic building set. 
For each application (= user of the safety layer), it is decided by configuration which parts of 
the safety layer building set are needed (e.g., communication protocols). 
Not every application uses the complete functionality, e.g., an interlocking does not need the 
safety communication protocols for communication to the train. 

2. Performance testing by the safety layer test cases does not completely ensure the 
performance (scalability, throughput, reaction time, etc.) of each application in each 
application-related situation. 
Each application must perform application-related performance tests, especially for 
worst-case scenarios from the application’s point of view in a specific configuration regarding 
the selected parts of the safety layer building set. 

3. The scenarios with inter-application communication of different applications running 
together on the same safety layer need to be tested by all involved applications as an 
integrated set of applications. This also includes performance testing of the applications. 

4. Safety layer developments of performance relevant functionalities (e.g., communication 
protocols) should not be finalized before the integration with the respective 
application and real communication partners (including performance testing of the 
application) has been done successfully. 
Experience has shown that it is a very complex task to define requirements for such a 
platform properly before integration, especially the non-functional ones. 
Parallel usage of the safety layer in application testing is highly recommended because it is 
very important for the "early" handling of findings (identified during application testing). 
 

5. Generic type approval (e.g., for an interlocking system for DB) with complete re-use is the 
major goal to achieve lean engineering and engineering data testing for different installations. 

6. A generic test environment for application tests ("Testbahnhof") is best practice for testing 
the complete (100%) functionality of a complex application in the system context 
and ensures re-use of the test environment with the highest degree of automation. 
Individual installations never use the complete application functionality; so in the context of 
individual installations, only partial application testing would be possible. 
These characteristics can even lead to more than one "Testbahnhof", depending on the 
complexity of the application and thus required topologies to activate all features in all 
possible configurations and relevant situations. 
Especially this environment shall not only support testing on the target hardware with a fully 
activated safety mechanism but also a lean simulation environment to accelerate numerous 
(functional) test cases (regression, etc.). 

7. For the "Testbahnhof” environment, the knowledge of application experts is necessary 
to define the required details for 100% testing of the complete application (from a functional 
and performance point of view). 

8. Simulations are used as connected systems to achieve an overall system close to reality 
(e.g., simulation of object controllers for interlocking testing, simulation of on-board units for 
RBC testing). It is not practical to define each input at each external interface by test cases 
itself. 
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9. The test system shall allow flexible configuration regarding the usage of real partner 
systems/usage of simulated partner systems and shall always support the usage of original 
configuration/engineering data in the system (or parts of the system) under test. 

10. Usage of the original "Testbahnhof" engineering tool allows efficient data preparation and 
ensures data quality and data consistency as well as early engineering tool availability in the 
case of engineering tool enhancements. 
Development and extension of the engineering tool must therefore be performed in a parallel 
and coordinated way from the start of application development. 

11. Usage of the same test system for software testing and data testing ensures a high level of 
re-use of test tools (e.g., simulations) and test cases for both test scopes. 

12. Data testing is done by data testing experts (not application experts) with the same test tools 
and the original data of the customer installation, i.e., with a completely set-up system with all 
running applications used. This ensures the quality of the complete installation (not only part 
of it). 
Test cases for data testing are focused straight on the installation data (not on the complex 
application logic functionality itself) 

13. Fully automated processing of each test allows very lean regression tests in each 
integration situation (even if e.g., only the COTS hardware version has changed without any 
impact). 
Automated repeating of all test cases is easier to do and to argument than deep diving into 
safety-related argumentation about "what tests need to be repeated (or not) for what reason". 

14. The integration activities shall be parallelized in the best way possible. 
The best way possible means to start at the right time and in a defined sequence: 
- not too early to avoid immature deliveries 
- not too late to be able to react (repair) as early as possible in the case of any findings 
Late findings are very time-/cost-intensive to repair. 

15. Mutual waiting points in parallel activities (e.g., parallel testing on the application side and 
the safety layer side) are, inside one company, never "end-to-start" but in most cases "end-
to-end" relationships, i.e., to finish the activities. 
E.g., the application side cannot finish final integration of the application on the safety layer 
before the safety layer itself is provided as a final version. 

16. "End-to-start" waiting points (the application cannot start because the safety layer is not 
provided) only occur at "official delivery interfaces", e.g., to other companies, because 
"parallel integration of draft versions" is not the way two companies are working 
together.  Such "end-to-start" waiting points at official delivery interfaces between different 
companies impede optimized parallelization and have extremely high claiming potential 
between the companies involved. 

17. It is not enough to rely on "compatibility statements on paper". 
It has happened several times that, e.g., new COTS deliveries are declared as being 
"compatible" on paper and, in reality, the time behavior has changed in a way that affects 
availability of the safe software running on it. Therefore, each delivery shall be integrated 
(even if the delivery is "compatible" on paper). 
As applications are becoming more and more complex, compatibility itself turns out to be a 
complex phenomenon, especially for non-functional aspects. 

5.7 Example: cross-vendor integration in the EULYNX context 

To illustrate the complete picture of modularized architectures, the Figure 48 below shows, as an 
example, the current architecture of the existing legacy systems for an interlocking. 

Today, in the EULYNX context, only system interfaces are standardized. All system-internal 
integrations (vertical and horizontal) are the complete responsibility of the legacy vendor. 
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The standardized system interfaces between the central interlocking logic and the decentralized 
object controllers are based on the already established RaSTA safety protocol. 

Cross-vendor integration is only to be performed for the horizontal interface between the systems 
(interlocking logic, object controller) for an established technical communication interface and two 
vendors involved. 

From a technical architecture point of view, this integration seems to be quite easy, but has actually 
turned out to be challenging during realization due to a lack of clear responsibilities and processes. It 
is hence clear that an even more modular approach involving horizontal and vertical 
integration requires the definition of responsibilities and processes and suggests, as detailed in the 
following section, a standardized testing approach. 

 

Figure 48 Cross-Vendor integration EULYNX 

The EBA Bund Anlage 17 [5] deals specifically with cross-vendor integration and points out its 
complexity.  

5.8 Consequences and proposal for an automated integration test approach 

For the automated integration testing of a defined system variant with the modular RCA approach, the 
scope of the system variant needs to be defined precisely.  

It is proposed to define individual system variants with different functional scopes according to the 
functionality of the individual installations, e.g., interlocking, RBC, interlocking + RBC.  

The functional scope defines the needs regarding the environment as test data ("Testbahnhof"), 
integration test cases, simulations for object controllers, on-board units, etc. 

Test automation shall cover overall integrations for the generic system variant(s) and data testing of 
the installations. 
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Figure 49 Standardization for automated overall integration 

Vertical integration of the involved parts (e.g., RTEs, applications) shall be the responsibility of the 
individual vendors: 

• vertical integration of the basic layers of the computing nodes (hardware, load operating 
system, virtualization) in the responsibility of the infrastructure manager 

• vertical integration of the RTEs running on the virtual computing nodes in the responsibility of 
the RTE vendors 

• vertical integration of the applications running on the RTEs on the virtual computing nodes in 
the responsibility of the application vendors 

 

For the special "application bundle" constellation, horizontal integration of the bundled applications 
(APP-4 / APP-5 / APP-6 in Figure 50 below) needs to be considered. All application vendors need to 
be involved for that matter. 

For automated system integration, the horizontal integrations need to be solved within a standardized 
(= vendor-independent) test environment. 

To that end, the following aspects need to be standardized: 

• data interfaces (CFG and ENG data) with data format and data values 
This data needs to be vendor-independent to create a generic “Testbahnhof” as the test 
environment. 

• test cases for integration of the application interfaces from a functional and performance 
point of view 
These test cases must be as modular as the system variants, e.g., there must be test cases 
for the interlocking functionality and for the RBC functionality. 

• test cases for integration of the RTE-RTE-interfaces from a functional and performance 
point of view 
These test cases are focused on the safety-related communication protocol for the exchange 
of application data between the RTEs. 

• test cases for integration with the infrastructure components 



 

Page: 78 / 109 

• test cases for the overall system functionality (from a functional and performance point of 
view) 

• test system to process the defined integration test cases 

• engineering tool as a data preparation tool for creation and maintenance of the 
“Testbahnhof” test environment 

• simulations of the external components (e.g., object controllers, on-board units) with defined 
interfaces for manipulation of the behavior by dedicated test cases 
E.g., to manipulate the behavior of a "point controller simulation" by a test case which tests 
the situation that the point position changes unexpectedly. 

Note: 
The RTE-related data depends very closely on the RTE solution, e.g., the application-related RTE 
configuration for cyclic running of the application replicas on the RTE in 2oo3 or 2x2oo2 or a different 
mode. 

Due to this dependency on the RTE solution, however, the RTE data content cannot be standardized. 
This leads to vendor dependencies in the RTE-related parts of the test environment. 

The amount of RTE-related data is very modest; an RTE utilizes approximately 10% of the data of the 
applications running on the RTE. 

Figure 50 below shows the required overall integrations for a generic RCA system variant 

For automated data testing of a specific RCA installation, the following aspects need to be additionally 
standardized: 

• Engineering tool: For vendor-independent handling of the ENG data, the engineering tool 
needs to be standardized. 
The same engineering tool should be used for data preparation for the test environment 
("Testbahnhof") and the real-life installations. 
Note:  
The ENG data of the individual applications is provided by the application vendors.  
The usage of different engineering tools would lead to a multiple effort for engineering tool 
development and an increased effort for the handover of ENG data between application 
vendors and data testers. 

• Tool support by data preparation (engineering tool) for data testing (test system): The 
engineering tool shall support the automated creation of installation-related test cases for data 
testing. 

Figure 50 Overall integrations for an RCA system variant 



 

Page: 79 / 109 

 

Figure 51 below shows the required integration for data testing of a specific RCA installation. 

 

 

  

Figure 51 Data testing for RCA installation 
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6 Effects on operation 
Compared to more classical approaches towards system architecture, it is proposed to account for a 
number of operational impacts as outlined in the following section. Particularly, the concept of "vendor 
multiplicity" also requires the implementation of additional measures. 

6.1 Operational impacts 

To assess the impacts on running operations of railway operators and vendors, it is important to 
consider the complete system lifecycle. Therefore, it is necessary to differentiate between the 
following lifecycle phases: 

• concept/design 

• development/setup 

• testing/integration/migration/rollout 

• homologation 

• maintenance/operations 

• update/upgrade/extensions 

 

The End-of-life phase is omitted, as it is not the focus of our current considerations. 

In addition to assigning operational impacts to lifecycle phases, functional clusters are formed to 
further distinguish the specific area of impact: 

• platform architecture – design, development, integration, and verification of the safe 
computing platform and its applications 

• multi-vendor approach – possibility to source safe computing platform components and 
applications from several vendors. 
This also includes new vendors coming from non-railway domains. 

• obsolescence management – consequences that arise from the usage of COTS components, 
which in general have a shorter lifetime and shorter market cycles 

• cybersecurity – efforts to protect the safe computing platform and the safe applications from 
security vulnerabilities 

• geographical redundancy – distribution of the safe applications over geographically separated 
data centers to increase availability 

• centralization – implications stemming from a large degree of centralization of applications in 
few data centers 

• training and talent access – effort for and cost of hiring new technical experts and training 
staff on standardized, state-of-the-art technology 

 

As a final step, the potential financial range of operational impacts is indicated, based on internal 
estimations: 

positive potential financial impact: 

• EUR 0 < value < EUR 50 million 

• EUR 50 million < value < EUR 100 million 

• value > EUR 100 million 

negative potential financial impact: 

• EUR 0 < value < EUR 50 million 

• EUR 50 million < value < EUR 100 million 

• value > EUR 100 million 
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This leads to the following combination of lifecycle overview, functional areas, and financial value: 

When looking at the combined overview of operational changes, it becomes visible where and to 
which financial degree and impact will be most likely felt. A general trend that can be observed is that 
extensive investments are required at the beginning of the lifecycle of the new system approach. 
Here, for example, the setup of new developments, frameworks, tools, and processes comes to bear 
that is expected to be leveraged throughout the lifecycle. Hence, more significant potentials for 
savings can be seen in later phases when the operational ramp-up has been turned into production. 
Overall, there appears to be a clear positive business case of introducing a SIL4 Data Center 
including a standardized interface between application and RTE. 

6.2 Impacts on total cost of ownership 

The following sections describe additional aspects regarding the overall cost situation, which are 
implied by the top-level objectives. 

6.2.1 COTS-based data center 

Cost saving factors of a COTS-based data center are: 

• reduction of hardware by a high level of integration of several systems running on the same 
hardware 

• reduced costs for hardware maintenance (hardware replacement) 

• reduced costs for migration to new hardware (with a defined interface to the RTE) 

• usage of non-domain-specific hardware 

• reduced obsolescence risk 

• reduced costs for spare parts logistics (e.g., storage costs) 

 

It seems beneficial that, apart from standardizing key interfaces, processes and tools also undergo 
standardization. 

If each vital application were to run on a different implementation of common functionalities (e.g., for 
virtualization, IT security, remote update, geographical redundancy, dynamic resource management), 
this would result in a complicated configuration and administration of the SIL4 Data Center and 
consequently increase the effort for integration, installation, and maintenance significantly. 

The usage of generic hardware reduces the obsolescence risk and may have a positive cost effect on 
hardware purchases; also, spare parts logistics are expected to be more cost-efficient over the whole 
lifecycle. On the other hand, a qualification process for the respective hardware must be passed each 
time a single new element will be introduced into the existing system. 

Figure 52 Overview about lifecycles, functional areas, and financial values 
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This implies that a completely new value chain must be defined for successor systems (or spare 
systems). 

With the introduction of the SIL4 Data Center, for the first time there would be a standardized 
approach to computing infrastructures for safety-critical railway applications for the first time that, by 
design, facilitates centralization. Such a centralization is already possible today, but only through 
proprietary means (and application architectures like EULYNX already support this). In Figure 52, the 
costs and benefits of centralization are related to reducing the number of data centers covering a 
specific application functionality for all of Germany from a few dozen to a single-digit number. This 
centralization does not directly depend on the usage of a new RTE and COTS-based hardware.  

6.2.2 Development effort for applications 

Regarding the development effort for applications, one should differentiate the following cases: 

porting of legacy applications to run on the same virtualization layer as other applications (but not yet 
supporting the target API between application and RTE) 
This effort is considered to be quite modest, at least for vendors who today have an RTE solution that 
can generally run on COTS hardware. In this case, one must also consider that the existing 
applications (e.g., interlocking logic for DB) must be maintained and probably enhanced with new 
functionalities in the future to achieve a common data center with complete functionality even for 
legacy applications. 

1. porting of legacy applications to support the target API between application and RTE 
It is assumed that this effort would be substantial. Since it is intended anyway (e.g., by RCA) 
to introduce a new application architecture for CCS systems, it is further assumed that there 
is no benefit in porting a legacy application as such to the target API between application and 
RTE. Instead, one would develop new applications according to the new application 
architecture and SIL4 Data Center architecture including the target API between application 
and RTE 

2. effort to develop new applications in compliance with the SIL4 Data Center including the 
target API between application and RTE 
It is assumed that the effort to develop applications is the same with or without compliance 
with the SIL4 Data Center. Possibly, application development efforts may be slightly reduced 
through a standardized API between application and RTE, as additional efforts to define such 
interface by each vendor would be avoided. The main condition for this is a well-described 
requirement specification considering the new split of safety-relevant functions and allocation 
to the newly composed elements. 

6.2.3 Development effort for RTEs and legacy systems 

There will be a great deal of effort to develop a new RTE and to adapt legacy systems to run the 
legacy systems in the same way in a COTS-based SIL4 Data Center. 

To that end, it is important to define the requirements regarding the safety concept of the safety layers 
(RTE/legacy solution) not too restrictively to enable a common solution for both scenarios for each 
legacy vendor. 

It shall be possible to adapt a legacy solution in such a way that the legacy safety layer 

• can be provided as an RTE (with generic API) and  

• can continue to be as a legacy solution with legacy API between legacy safety layer and 
legacy application 

 

Requirements that are too restrictive would lead to the situation, in which legacy vendors need to 
completely reimplement the RTE and vital application and possibly need to maintain two completely 
independent implementations (one for legacy systems, one for RCA) – which might conflict with 
human resource and budget constraints. 

Therefore, the RTE design needs to keep a balance between the standardization of interfaces and the 
flexibility to port existing legacy applications onto that platform with an acceptable effort. 
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6.2.4 Integration effort 

The major challenge is that the main work packages and needed processes in the context of cross-
vendor integration have not been defined to date. The responsibility for integration must be clearly 
defined and clear processes must be introduced. Even for the current EULYNX architecture, in which 
two vendors are involved for the interlocking logic and the object controllers, this task has not been 
solved to date. 

Due to the architectural modularity and higher vendor multiplicity of RCA-based systems (compared 
to EULYNX), resulting in many cross-dependencies, the integration will be much more complicated. 
This can be distinguished as: 

• vertical integration of safe applications on an RTE  

• horizontal integration of several safe applications running on same RTE 

 

The large number of common interfaces and involved vendors will lead to additional work packages 
and new roles of responsibility for cross-vendor integration. Existing test cases, tool chains, and test 
environments that can involve different vendors must be developed and approved in advance. 

Particular attention should be placed on the neutral re-usability because it can be assumed that the 
setup (composition) in each project (interlocking installation) will be different. This can be the 
case either from the very beginning or will evolve from maintenance procedures where different 
available devices will replace the original part.  

Synergies with existing test cases are expected to be very low due to the disruptive technical 
approach. 

Costs and/or benefits regarding integration, assessment, and homologation should be further 
investigated in detail to assess the business case over the complete lifetime. Additional focus should 
be on the definition of accompanying rules and processes. 

6.2.5 Operational benefits 

The new architecture will have a significant impact on operational aspects which have to be carefully 
evaluated. 

OPEX reductions due to centralization (space, power consumption, maintenance) are expected. 
Nevertheless, it must be evaluated if these benefits will be reduced in brown-field environments, as 
the re-use or different use of existing interlocking rooms is not always possible. 

CAPEX: Reduced costs for new buildings including studies, planning, installation are expected 
especially in green-field environments. 

Maintenance, updates: A positive impact on maintenance due to increased efficiency and centralized 
access for corrective measures and patches (cybersecurity, etc.) is expected and must be further 
evaluated. 

Human resources: There are several aspects to consider: 

• Training effort is expected to be reduced due to a homogenous installed base. Nevertheless, 
it is not yet possible to evaluate a clearly positive or negative impact compared to the current 
situation or alternative technical solutions. 

• Talent access: Better access to young talents is expected, as these talents tend to invest into 
state-of-the-art technologies rather than e.g., relay-technology. 

• Operational efficiency. Efficiency is expected to increase due to centralization and operation 
through regional operation centers. 

 

The discussed operational benefits for infrastructure owners are not only related to the SIL4 Data 
Center architecture and might as well be achieved through alternative system architectures that 
enable centralization of the SIL logic. 
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6.2.6 Project timelines 

The cross-vendor integration of a huge number of interfaces will lead to increased project durations 
because “official” interfaces between different vendors cannot be managed and coordinated in such 
an efficient way compared to a single vendor in terms of integrated processes, commonly used 
toolchains, and parallelized workstreams between platform development, application development, 
and project engineering. 

In addition, the cross-vendor alignment of time schedules and delivery interfaces for integration will 
also lead to increased project durations. 

On the positive side, standardization of the interfaces and processes will reduce the integration effort 
in a multi-vendor scenario. Once the initial setup, processes, and integration responsibility are clearly 
defined, benefits for individual projects (cost and time savings) or an industrial rollout are expected.  

These benefits are not directly related to the architecture but can (or should) be achieved through 
industrialization of project processes. A limiting factor in signaling projects is the installation of the 
field elements and the necessary cabling work. This effort is expected to remain unchanged. The 
portion of this part of the value chain should be estimated and put in relation to the achievable 
savings.    

6.3 Maintenance strategy 

To maintain the data center, a defined maintenance strategy is necessary to handle all the individual 
changes (with different vendors involved) within the overall lifecycle of the data center in the best way 
possible. 

For this purpose, the following aspects need to be considered: 

1. maintenance driven by an unintended need for action, as e.g., obsolescence issues 
regarding the COTS hardware or bug fixing within the software layers 

2. maintenance driven by operational business, as e.g., enhancements and modifications in 
existing installations 

3. maintenance to ensure an efficient maintenance process to keep the data center up to 
date, e.g., changing parts whenever it is possible to update all the parts to the newest 
available versions as efficiently as possible 

 

For each part of the data center, it must be evaluated if regular updating in shorter time periods and 
small steps (e.g., steps from version 1.1 via 1.2, 1.3, 1.4 to 2.0) is better than updating in longer time 
periods with larger steps (e.g., step from version 1.1 to 2.0). 

Note: 
Compatibility statements of new versions of individual parts refer normally only to the direct 
predecessor version of the part. 
For instance, the release notes only describe the changes from version x.y to version x.y+1 and do 
not provide information about compatibility between the versions before x.y. 
This means that in the case of “skipping some intermediate versions“, all the compatibility statements 
of each individual intermediate version need to be taken into account. 

The vendor multiplicity of all the parts of all installations is a basic factor for definition of the 
maintenance strategy. 
Each change in the data center – for whatever reason – leads to the need for integrations with 
different vendors involved (involved at least for support). 
So, it may happen that a change in a part of vendor 1 leads to support by vendor 2 being necessary 
for integration purposes. 

For such a maintenance scenario with different vendors involved, time scheduling and financing of the 
integration efforts need to be clarified with all vendors involved. 



 

Page: 85 / 109 

6.3.1 Hardware obsolescence 

During the lifetime of a data center, different COTS hardware devices will be used from different 
vendors and in different versions from each vendor. 
Due to the fact that every COTS hardware needs to be integrated for all affected installations (which 
are to run on it), a defined maintenance strategy is necessary to efficiently handle different COTS 
hardware versions as spares for hardware obsolescence purposes. 

• One strategy could be to replace hardware devices preferably 1:1 for each individual 
hardware computing node, i.e., providing spare devices in the exact same types/versions as 
actively used. 
For this strategy, only the relevant combinations of software and hardware need to be 
integrated, but it is necessary to have all hardware variants/versions as spares in stock. 

• Another strategy could be to use the same hardware version as spares for all installations. To 
that end, it is necessary to integrate the new hardware version with every installation in 
advance to be ready to use the hardware version later in maintenance. 

 

The preferred maintenance strategy from an integration costs and spare handling costs point of view 
will probably depend on the situation regarding automated integration of COTS hardware devices for 
a specific installation. 

6.3.2 Virtualization lifecycle 

During the lifetime of a data center, different versions of the virtualization solution will be used. 

Each new version of the virtualization solution needs to be "hardened" for the specific usage within 
the SIL4 Data Center to ensure the required level of reliability and fulfillment of the safety-related 
requirements of the RTEs. 

Due to the fact that every virtualization solution needs to be integrated for all affected installations 
(which are to run on it), a defined maintenance strategy is necessary to efficiently handle different 
virtualization versions on all the used hardware computing nodes. 

Handling the new versions in the most efficient way will depend on the specific virtualization solution. 

6.3.3 Maintenance of individual Installations 

If an individual part of an installation needs to be changed (e.g., for safety or availability reasons), it 
must be clarified and decided how to handle this change. 

Such a change in one part leads to consequential integration efforts/costs for other parts. 

Example: 
If the RTE needs to be changed (for pure RTE reasons), this results in efforts to integrate all affected 
applications which are running on this RTE. 
If ten installations use this RTE, these integrations with all the affected applications need to be done 
for all ten installations (because an RTE within an installation cannot be replaced without any 
integration). 

To handle such scenarios, different strategies are possible: 

• updating the RTE (and as a consequence all integrations) for all ten installations without a 
deep dive analysis of the question “is it really necessary to replace the used RTE by a new 
RTE version for each individual installation 1, 2, 3, …?” 

• performing a deep dive analysis to decide which installation is affected 
If the RTE change affects a specific RTE functionality, such as e.g., the bundling of 
applications, then installations without bundled applications do not need to be updated. 

 

Such an analysis can only be done by application experts to decide, if an RTE update is required for 
the application or not. 
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Such an analysis is a safety-relevant analysis and needs be confirmed by safety experts for the 
application. 

For such a scenario, the cost situation must be clarified, i.e., who will provide the budget for 
application analysis, integration, validation, etc. if it is caused by the RTE (from another vendor). 

6.3.4 Data center equipment catalogue 

For the data center, it is necessary to catalogue every detail of the complete equipment in a sort of 
equipment catalogue. 

In this catalogue, all individual parts (COTS hardware, virtualization, RTEs, APPs, etc.) and their 
version numbers must be listed for every installation of the data center. 
This catalogue is the basis for each decision about maintenance activities within the data center. 

Example 1: 
The catalogue is the basis for identifying the affected installations in case that a failure in one specific 
part (e.g., application x in version y) is detected. 

Example 2: 
The catalogue is the basis for identifying the affected installations in case that a specific version of the 
COTS hardware is no longer available and needs to be replaced – in the case of spares – by another 
COTS hardware version. 

6.4 Vendor multiplicity 

This section describes the situation regarding "vendor multiplicity" in the modular 
approach considering aspects of standardization and integration. 

 

Figure 53 Vendor multiplicity 

6.4.1 COTS hardware 

From a technical point of view, the COTS hardware can be purchased directly from different vendors 
if the respective minimum requirements are fulfilled. Also, any change in the hardware (CPU 
hardware, CPU BIOS) needs to be qualified. 

Responsibility for the COTS hardware needs to be defined regarding qualification and monitoring of 
the supplied hardware, as there is more to it than simply acquiring the hardware. 

For hardware qualification, see section 5.3.1. 

Note: 
Once a hardware setup has been chosen, it cannot be fundamentally changed throughout system 
lifecycle. The hardware setup needs to be specified in detail from the start and evaluated in its safety 
concept to meet the homologation prerequisites. 
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6.4.2 Virtualization solution 

For a common virtualization solution within the complete data center, the same solution shall be used 
for all hardware computing nodes. 

The number of vendors that must be involved to realize this common solution depends on the detailed 
virtualization solution. But in general, it is recommended to keep the solution as simple as possible, 
because it must fulfill the set of requirements that are imposed by the totality of safety requirements 
for all RTEs. The virtualization layer should not be safety relevant. This implies that the RTE must 
detect faulty behavior of the virtualization layer. 

Any change in the virtualization software needs to be qualified. 

Responsibility for the virtualization software needs to be defined regarding qualification and 
monitoring of the supplied software, as there is more to it than simply acquiring the virtualization 
software. 

For virtualization qualification, see section 5.3.3. 

6.4.3 RTE vendors 

From a technical point of view, it shall be achieved that RTEs of different vendors can run on the 
same COTS hardware, encapsulated by virtual machines. 

This is possible by standardizing the interfaces and the behavior of the RTE. This would, in fact, take 
the vision from OCORA initiative [2] one step further in providing not only a standardized separation of 
application and platform, but also of RTE and computing nodes. 

The basic requirements regarding the RTE behavior of the generic computing platform shall be 
defined as standard for all RTEs, even for legacy systems.  

From a safety point of view, the basic condition is that each safety layer (within the RTE or the legacy 
systems) shall allow to run any software on the same COTS hardware (which will run separately on 
their own virtual computing nodes).  

In principle, it would be possible to run two or more RTEs from different vendors in one installation 
(e.g., Frankfurt interlocking), but it must be thoroughly investigated if this is beneficial from the 
following points of view: 

• economic (costs for sourcing two or more RTE implementations) 

• development effort (standardized communication interface between the RTEs necessary) 

• maintenance (operation of two of more RTE instances with different solutions for hardware 
usage e.g., as 2oo3 or 2x2oo2) 

• For a mixture of different RTE-solutions within one installation, the following aspects currently 
remain unresolved: 

• A standardized safety protocol for the communication between different RTE solutions is 
necessary. 

• An integrity check for the installation is necessary (cannot be solved by the RTE because 
each RTE is only responsible for a part of the installation). 

• Time synchronization between applications is not possible (because such a synchronization is 
only possible within the context of the same RTE solution). 

 

Also, the application cannot be switched from on RTE to another without additional integration. This 
will be discussed further in section 4.5. 
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6.4.4 APS* vendors 

Applications can be provided by different vendors if they follow the definition of the standard API. 

Due to close dependencies at the interface between RTE and application from a safety point of view, 
there will be RTE solution-specific rules for application development (e.g., SRACS, SIL4-relevant 
development tools of category T3). 

This means that each RTE solution allows to provide applications by different vendors, but the result 
of the provided application has a relation to the utilized (= integrated) RTE. 

For bundled APS*, the inter-dependencies for the integration of several APS* running together within 
the same application replica need to be considered. 

For details regarding the RTE solution-specific API, see section 4.5. 

6.4.5 Legacy installation 

By defining a standardized generic computing platform (including a standardized virtualization layer) 
for all installations, it will be possible to provide a legacy installation as a complete package by one 
legacy vendor. 

The legacy installation needs to be installed on the virtual computing nodes to run together with other 
installations in the same data center on the same computing nodes. 

6.4.6 Non-SIL COTS diagnostics 

The non-SIL software for COTS diagnostics (running on the generic computing platform on each 
hardware computing element) shall be provided for the complete data center by one vendor. 

The COTS diagnostic software is a non-SIL software and does not have any dependencies to the 
installed rail products. 

COTS diagnostics are focused on the generic computing platform (virtualization, load operating 
system, COTS hardware). 

6.4.7 Other non-SIL products 

Each of the non-SIL products can be provided by a different vendor; it is possible to install several 
non-SIL products provided by different vendors. 

6.4.8 Installation and update infrastructure 

Installation and update is a common functionality which is needed for the complete data center, 
irrespective of the amount and type (RCA, legacy) of installed systems. This common functionality 
shall be implemented by one solution for the common infrastructure provided by one vendor. 

Of course, it would be possible to separate this basic common functionality into individual parts with 
partial functionality. But to enable the involvement of several different vendors, all the interfaces and 
dependencies between these individual parts need to be defined as standard. This is not clarified in 
detail to date.  

6.4.9 IT security infrastructure 

IT security is a common functionality which is needed for the complete data center irrespective of 
the amount and type (RCA, legacy) of installed systems. This common functionality shall be 
implemented by one solution for the common infrastructure provided by one vendor. 

Of course, it would be possible to separate this basic common functionality into individual parts with 
partial functionality. But to enable the involvement of several different vendors, all the interfaces and 
dependencies between these individual parts need to be based on an international standard (e.g., 
IEC 62443). Section 3.3 specifies the requirements for an international standard and section 4.12 
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specifies the proposed architecture for the common IT security infrastructure/shared IT security 
services. 

6.4.10  Central diagnostics infrastructure 

Central diagnostics is a common functionality which is needed for the complete data center, 
irrespective of the amount and type (RCA, legacy) of installed systems. 

Central diagnostics should be solved by a common solution, even over several data centers. This 
common functionality shall be implemented by one solution for the common infrastructure provided by 
one vendor. 

6.5 Development tools 

The RTE shall give access to application vendors that do not develop their own RTE. In the context of 
"application development with different vendors involved", the development tools garners significant 
attention, in particularly the tools for development and data preparation. 

6.5.1 Tools for application development 

The API of the RTE shall be as generic as possible and shall not restrict flexibility in the usage of 
development tools on the application side, i.e., the RTE shall not require specifically defined 
development tools for the development of the application logic itself. A standardized tool set for 
application development is not defined to date. 

It may depend on the individual needs of an application, if a tool set is required and what kind of tool 
set is the best solution. 
A development tool could support the "style"-conformity of development of exactly this one kind of 
application when it is developed by different vendors.  

Examples: 
An interlocking logic application based on the geographical redundancy principle is developed with 
other tools than an interlocking logic application based on the route table logic principle. 
An RBC application logic (with a high degree of mathematical calculations) is developed with yet 
another specialized development tool. 

The benefit of standardized application development tools is mainly driven by the needs of the 
applications and not by the API of an RTE. 

6.5.2 Tools for generation of executable applications to run on a specific RTE solution 

Each RTE solution will provide an RTE-related tool set which needs to be used for generation of an 
executable application, e.g., for compiling, safety measure implantation, etc. 

Such specific tools depend on the specific safety solution of the RTE and cannot be standardized 
across the RTE vendors. 

6.5.3 Tools for development of an RTE 

For RTE development, a standardization of development tools is not practical because RTE solutions 
will e.g., arise from already existing solutions of legacy safety layers, which would not support 
standardized tools across the legacy vendors.  

Additionally, the methods and programming principles for RTE development will depend on the details 
of the RTE-related safety concept, which is not standardized across the RTE vendors. 
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6.5.4 Data preparation and transformation tool  
6.5.4.1 RTE data 

Each individual RTE solution will need some configuration and engineering data and such data needs 
to be: 

• created by a tool in a readable format as a basis for data validation 

• transformed by a T3 tool from the readable format into the RTE-specific binary format for the 
running installation 

 

To the current day, neither the format for such RTE data nor the tools for data creation and data 
transformation have been standardized. 

Due to the close relationship between the RTE-specific data definition and the safety concept of an 
RTE, standardization is only partially possible (e.g., data format). 

6.5.4.2 Application data 

Each individual application will need the engineering data for the specific installation and perhaps 
(depending on the application itself) configuration data.  

Such application data needs to be: 

• created by a tool in a readable format as a basis for data validation 

• transformed by a T3 tool from the readable format into the specific binary format for the 
running installation 
To keep the RTE independent from the format of the application data, the binary format of the 
application data shall be defined by the application itself. 
Consequently, the data transformation tool (readable format → binary format) belongs to the 
application. 

 

The data format and tools for data preparation and data transformation (from the readable format into 
the binary format) are not defined as of today. 

The benefit of standardization depends on the complexity and amount of data of the individual 
applications. 

Standardization would be possible: 

• for a specific individual application (e.g., APSMOT) from a data content point of view, if the 
data of the application (e.g., APSMOT) is the same for each solution of this application (and 
can be provided to any vendor of this application) 

• across the different applications with regards to data format and data transformation tools 

• for both with regards to data preparation tools 
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7 Certification and homologation 

7.1 Applicable standards 

Homologation of a safety-related railway system is based on the standards of the EN 501xx series: 

• EN 50126-1:2017 

• EN 50126-2:2017 

• EN 50129:2018 

• EN 50128:2011 

• EN 50159:2010 

7.2 Homologation 

The precondition for homologation is the successful assessment against the requirements in these 
standards. If the system consists of multiple, independently assessed components, they can be 
integrated based on their mutual safety-related application rules. 

The homologation of applications within a SIL4 Data Center provides the following additional 
challenges: 

• integration of applications on multiple RTEs 

• use of commercial off-the-shelf hardware and software 

• independently assessed applications sharing the underlying software layers and even 
hardware 

 

Figure 54 below shows the different variants of applications and underlying layers with different SIL 
levels.  

 

Figure 54 Basic architecture of the SIL4 Data Center 

For the variants with the interfaces as marked above with (1), (2), and (3), the relevant standards are: 

(1) + (2) EN 50128, Sections 7.3.4. and 7.2.4.9, and EN 50129, Section B3 

(3) pre-existing items according to EN 50129/2018, Sections 6.2 and F2.11 

7.2.1 Integration on multiple RTEs 

The application should be able to run on a range of RTEs. This leads to the requirement to define a 
common application interface that is implemented by different RTEs. 
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If a safety platform is used to implement a safety-related application, the application must fulfill the 
application rules of the safety platform, particularly the safety-related application rules (SRACs). If an 
application is intended to run on multiple safety platforms, it must fulfill the SRACS of all of these 
platforms. This "set of possible SRACs" must be defined a priori to enable the parallel development of 
RTEs. 

The challenge when defining the SRAC part of the application interface is to find the right balance 
between: 

• strong rules for the application, hindering application development but allowing divergent and 
innovative RTEs 

• a minimal set of rules for the application, based on given safety principles of the RTE, 
therefore hindering innovation and competition between RTEs 

This is not a fundamental problem, but a question of optimization between conflicting targets that 
must be addressed in the definition phase of the interface. 

It should be noted that the porting of applications to different RTEs may be facilitated by having (a 
large portion of) RTE-specific SRACs be inherently covered by the tooling (e.g., compiler) provided by 
the RTE vendor. 

In general, an investigation should be made into the extent to which SRACs (or a "superset of 
SRACs") can be standardized without posing too many limitations on the application side and on the 
extent of RTE innovation.   

7.2.2 Usage of COTS hardware and software components 

The assumption is that the data center consists of computing hardware that has not been developed 
according to and assessed against any safety standards (COTS hardware). 

Additionally, the exact hardware the system will run on is not known when the RTE is developed and 
assessed. Furthermore, it is expected that the type of hardware used in extension or replacement of 
existing installations will change over the lifetime of the system. Similar requirements must be met for 
the non-safety-related software stack below the RTE.  

The EN 50129:2018 standard explicitly allows the option to include complex items consisting of 
hardware and/or software that are developed outside of the context of a safety-related development to 
be used within a safety-related system (Section 6.2). This provides a framework for proving the safety 
of a system that realizes functional safety on COTS components. 

To use such unqualified components within a safety-related function, EN 50129 allows the following 
strategies: 

1. retrograde safety demonstration 

2. external negation of the hazardous failure mode 

3. demonstration that the failure mode cannot credibly occur due to properties of the component 

 

Option 1 is clearly not feasible, but options 2 and 3 can be used to create a valid SIL4 system based 
on generic hardware and software components. 

To that end, the hazardous functional failure modes of the pre-existing components must be analyzed 
at the interface without detailed knowledge and assumptions of the COTS components (hardware and 
software) itself. The necessary measures to handle these failure modes must be implemented in the 
RTE. This might lead to significantly more failure scenarios than for the traditional use case of a 
completely known hardware and software structure. The RTE, as the layer that must handle these 
failures, needs to implement a robust detection and mitigation mechanism to handle these possible 
failures. The target is to develop an RTE that can control all failure states of the pre-existing software 
and hardware, relying on as few of these properties as possible. 

The remaining assumptions about the COTS platform that are used in the safety argumentation must 
be such that: 
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• their violation is sufficiently unlikely by themselves (e.g., creation of codes of significant length 
by random bit errors) or  

• they are provable within feasible installation and maintenance procedures 

For the latter, the same consequence as in the previous challenge exists: These rules must be agreed 
upfront to allow standardized data center operation. 

7.2.3 Sharing of hardware and software components between systems 

The very idea of a data center is to share resources between independently homologated systems. 
They might run on the same computing node separated only by virtualization. The necessary proof of 
isolation could be mainly based on the same measures within the RTE that protect against hazardous 
influences of the non-safety-related pre-existing components. 

Since not all assumptions, that can be made about COTS software, would hold against other safety-
related railway systems, additional rules on maintenance and installation might arise. 
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8 Challenges unsolved today 
This section summarizes the biggest obstacles and challenges that were identified, and the major 
open points which could not be covered within the collaboration. This provides an orientation for the 
next steps and further investigation in future research projects. 

8.1 Cross-vendor integration processes, roles, and responsibilities 

A new level of integration will be required for the following reasons: 

• integration of RTEs and applications of different vendors 

• higher level of modularity of the product scopes (modular RCA architecture) 

 

One consequence will be that integration efforts currently performed inhouse by vendors will shift to 
the infrastructure manager (or a contracted integrator; new role). This will go hand-in-hand with a shift 
of responsibilities. Current experience (integration of EULYNX object controllers with interlockings) 
already shows) significant problems at a lower grade (less vendors, less products). EBA Bund Anlage 
17 [5] defines rules but is also limited to EULYNX and does not consider these increased challenges. 

With this in mind, an investigation will be required into how the increased efforts and thus costs in this 
area would relate to the expected benefits of a modular architecture with standardized interfaces and 
competition among (more) vendors. 

8.2 Juridical recording of cross-vendor influences for clear responsibilities 

Juridical recording is needed to analyze any system malfunction and to find out which part of the 
system has caused the error. To that end, it does not make a difference if the malfunction is related to 
safety or availability. 

With a modular RCA approach based on a SIL4 cloud platform, the challenges increase as follows: 

• higher level of modularity (increases the number of modules for which juridical recording 
needs to take place, and this will influence performance by logging of all internal messages, 
e.g., between all application instances and RTE voter instances on an external juridical 
recorder) 

• mixed responsibility due to a higher number of vendors (who is ultimately responsible?) 

• shared resources (virtualization, hardware) by applications of more than one vendor (again, 
who is ultimately responsible?) 

 

Not only is there a quantitative increase in the need for juridical recording but there is also a new 
quality: where a vendor used virtualization as part of a complete product, that vendor was responsible 
for the product as a whole. There was no need to separately handle the virtualization (which is no 
SIL4 software). With virtualization being shared amongst products of different vendors, the liability of 
(the vendor of) the virtualization must be clarified. 

8.3 Generic process part of API  

Standardization of a generic safety solution will be challenging due to contradicting safety concepts of 
different RTE vendors. Each RTE solution with their own safety concept requires specific safety-
related activities on the application side (e.g., usage of RTE-related specific T3 tools for code 
generation, SRAC argumentation on the application side, integration with RTE, etc.).  

The details depend on the specific RTE safety concept solution and cannot be defined as standard. 

Necessary delivery packages for application development (test kit, development kit) depend on the 
specific RTE solution and cannot be defined as standard for different RTE solutions by different 
vendors either. 

These aspects will lead to safety-relevant dependencies between application and a specific RTE 
solution; for details, see section 4.5. 
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An "abstraction" of the application from the RTE solution-specific safety-related activities would be 
theoretically possible, but this would increase complexity in the shift of the application-related safety 
responsibility to another role. 
For this "abstraction", see section 4.5.8. 

8.4 Standardization of test and engineering environment for system variants 

RCA defines a modular architecture with vendor multiplicity for the modular parts. This leads to 
different combinations with parts provided by different vendors. 

For the handling of this flexibility in the different combinations, the overall activities to integrate the 
modular parts to form an assessed system need to be automated and standardized in the best 
possible way.  

To achieve vendor-independent automation of integration testing, the complete test environment (test 
tools, test data, test cases) needs to be standardized. This standardization also affects the data 
interfaces (of applications and RTEs) and the engineering tool that provides vendor-independent test 
data as e.g., "Testbahnhof" for system integration. 

For integration testing, see also section 5. 

In addition to integration testing, the validation activities at the system level need to be solved for the 
different combinations: 

• overall risk analysis 

• overall RAMS calculation 

• SRAC argumentation 

8.5 RTE – bundling of applications within same application replica 

As described in section 4.4.4, it will become a relevant consideration to bundle applications and thus 
will be a specific concern for RTE platform requirements.  

The requirements for the application behavior within the bundle regarding application performance, 
response time, message throughput, and application scheduling need to be defined as basic input 
requirements for RTE requirements. 

To that end, the scalability of the installation size needs to be defined, i.e., whether a huge installation 
consists of one application bundle for the complete control area of the huge installation or of multiple 
applications bundles for area parts. This needs to be decided to define the maximum limits of one 
application bundle. 

8.6 RTE – standardized communication between different RTE solutions 

RCA in its current phase has defined conceptual interfaces at the application level. It must be pointed 
out that a standardized safety protocol, carrying the payload of the application-level RCA interfaces, 
should be defined by RCA. This shall consider the aspects of safety, availability, flexibility 
(publish/subscribe), and mixed SIL for the communication participants. 

Note: 
This standardized safety protocol is necessary for the scenario of "applications of one installation are 
running on different RTE solutions". If all applications of one installation are running on the same RTE 
solution, then the RTE-internal communication mechanism is sufficient for exchanging data between 
the applications of the same installation. 

See also section 4.4.1. 

8.7 Virtualization requirements for the standardized operation of RTEs 

In order that all safety layers can run on the same virtualization solution, the safety aspects of the 
virtualization solution need to be standardized so that they fit all possible safety layer solutions. 

The requirements for the virtualization solution must be defined considering all possible safety layer 
solutions (safety argumentation, time behavior). 

The requirements shall consider the following: 
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1. the required mechanism from a safety point of view for each safety layer to check and ensure 
the correct distribution of the safety-relevant software parts to separate hardware computing 
nodes 
This requirement is safety-relevant, i.e., safety must be achieved via a combination of 
mechanisms provided by the non-safety-relevant virtualization and overlayed checks by the 
safety layers of the RTEs. 

2. the time behavior, e.g., to ensure the time behavior of the individual software parts running in 
parallel and synchronously in separate instances to achieve a safety layer that runs stably 
This requirement is required for availability.  
If this is not fulfilled by the virtualization software, then there will be safe reactions by the 
safety layers which massively affect availability (including stopping an installation). 

3. the reaction time, e.g., to ensure the reaction time of the individual software parts running 
within the virtualization 
This requirement is required for availability.  
If this is not fulfilled by the virtualization software, then there will be safe reactions by the 
safety layers which massively affect availability (including stopping an installation). 

4. the safety-related rules regarding the dynamic resource management 
This requirement is safety-relevant; for details see section 8.8. 

Today, these requirements are not defined, and it is not yet clarified which virtualization solution those 
requirements could fulfill. 

8.8 System – dynamic CPU resource management 

The "dynamic CPU resource management within one installation" aspect is not deeply analyzed 
today. 

Dynamic CPU resource management means that the individual software parts of an installation (e.g., 
safe voting, safe clock, application replica) are not mapped statically to the individual hardware 
computing nodes, but dynamically, e.g., depending on the dynamic availability of the individual CPU 
resources. 

Due to safety relevance, it is recommended to handle all changes in CPU resource management for 
every installation of a safety layer in the same way to the greatest extent possible.  
This means resolving the issue for a mixture of installations (legacy/RCA) running in different 
configurations (2oo3, 2x2oo2). 

Additionally, the following aspects need to be considered: 

• The network components (switches, routers) need to be involved in any change in the overall 
configuration regarding the used hardware. For instance, if communication with a connected 
system as an object controller is no longer to be done by the safety layer on one hardware 
(before) but by the safety layer on another hardware (new). 

• The update infrastructure for installation and update needs to be involved in any change in 
the overall configuration regarding the used hardware to ensure overall consistency and 
control about "what installation is running on which hardware computing elements". 
Which software is executed on which COTS hardware device must be defined at all times, i.e. 
the software must not disappear in the "jungle" of available COTS hardware devices. 

 

Since the mapping to CPU hardware resources is a basic condition for the safety argumentation of 
each safety layer solution, this "dynamic" aspect will have a safety-related impact on the involved non-
safety-related parts like virtualization and update infrastructure. 

From a system availability point of view, such a dynamic resource management is not needed, 
because each system shall, of course, already provide the required availability with static resource 
management by local and even geographical redundancy. "Static" does not necessarily mean 
"inflexible", because changes are nevertheless possible but only under the responsibility of the 
configurator of the system and not the system itself. 

For more information, see also section 3.1.13 
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8.9 “Non-safe RTE" for non-safety-related applications 

Today, the technical solution for an RTE for "non-safety-related applications running within the same 
data center with same redundancy principles" is not defined. 

Non-safety-related applications do not need safety mechanisms like voting and safety protocols, but 
redundancy is needed for the running system (local redundancy, geographical redundancy) and for 
communications. 

Whether a kind of "non-safe RTE" is useful for such non-safety-related applications or if each non-
safety-related application is developed completely separately, i.e., independent from any RTE, needs 
to be determined. 

The needs of non-safety-related applications may differ completely from those of safe applications 
from the point of view of application processing time, data handling in running mode, data handling in 
communication. 
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9 Conclusion 
The research collaboration between Siemens Mobility and Deutsche Bahn within the sector initiative 
“Digitale Schiene Deutschland” addressed and tackled many aspects for a future SIL4 Data 
Center over its total duration of one year. 

Firstly, the RCA/OCORA White Paper [3] along with its high-level objectives were analyzed, and the 
implications identified. Not all the objectives can be fulfilled in combination, which necessarily leads to 
a prioritization that is described in this report. Furthermore, the new objective of geographical 
redundancy was identified within this process. This has been deemed necessary to keep the 
availability up in a more centralized data center structure, even in case of catastrophic events like 
earthquakes or flooding. Additionally, a review of existing requirements based on EULYNX concepts 
was performed. EULYNX is rather focused on external system communication interfaces that are 
used today for control, command and signaling systems. On that basis, it is recommended to extend 
EULYNX' scope by the aspects relevant for a SIL4 Data Center. 

The architectural approach towards the SIL4 Data Center is similar but slightly different compared to 
the approach outlined by RCA/OCORA in the White Paper [3]. The layers for COTS hardware 
virtualization, RTE, and the idea of standardized interfaces are the same, but in addition, the SIL4 
Data Center approach strongly suggests the implementation of a standardized interface between the 
virtualization layer and the RTE. The virtualization component is to be identical for all computing 
nodes of the SIL4 Data Center to enable the deployment and redeployment of safe applications 
according to the respective needs required by a variety of operational situations within the data 
center. By following this concept, the SIL4 Data Center would enable the operator to benefit from a far 
more flexible basis. Within this approach, the safe and non-safe parts of the architecture are strictly 
separated. The safety-relevant layers are reduced to the upper parts of the RTE, the specific 
applications and their configuration data. Therefore, the safe components can be designed 
accordingly and the impact of SRACS on non-safe layers can be minimized. 

In other words, this modular approach supports the implementation of various products delivery by 
different vendors. It furthermore allows diverse lifecycles of different products. That means for 
instance that the installed COTS hardware can be replaced more frequently than a safe application. 
The report lays out several cases of how to replace components without interrupting safe operation of 
the overall system. 

On the topic of safe communications between individual applications, the report describes the concept 
of protocol gateways, and outlines how these gateways can be used to implement safe 
communication protocols. For Deutsche Bahn and Siemens Mobility, it has been crucial to define that 
the safety-related part of the protocol is intended to belong to the RTE and will be configured only if 
needed by the application. 

An especially important insight reached through the collaboration is that the SIL4 Data Center must 
include a migration concept for legacy applications. It is therefore recommended that the architectural 
approach enables running of legacy applications in parallel to the future RCA-compliant applications 
in the same SIL4 Data Center. This can be achieved, for instance, by implementing legacy 
applications directly on the virtualization layer, and apart from the standardized RTE. To support the 
migration concept outlined in this report, the interfaces and functionalities of the SIL4 Data Center 
(e.g., load tool, update mechanisms, and juridical recording) are to be standardized fundamentally 
and according to EULYNX, as legacy applications need to be adapted to these standardized 
interfaces eventually. 

Since command, control and signaling systems have partially hard timing constrains, the timing 
behavior will be a defining system requirement. To achieve the necessary response times, the 
additional penalty of inter-RTE communication can be avoided by bundling intricately connected 
applications on one RTE as an application bundle. In such an application bundle, all applications 
together represent one application replica which is running on one single RTE. Yet this instrument 
comes at a cost as it complicates the integration of the system. Applications within the same 
application bundle cannot be updated without recertification of the complete application bundle, which 
is again likely to result in negative effects on project partitioning and sourcing. 

The definition of the APIs was not part of the scope of this project, but as a result of the collaboration 
of Deutsche Bahn and Siemens Mobility, it became very clear that this is a challenging topic not only 
due to the complexity of the programming interface between RTE and application or RTE and 
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virtualization layer, respectively. From today's perspective, it is even more complicated to standardize 
the interfaces between runtime components and administrative tools like, for instance, IT security, 
installation and update tools, central diagnostic tools and data, juridical recording, data interface of the 
RTE, and RTE-related tools that instrument the application code with safety mechanism according to 
the safety concept of the RTE. 

Several concepts have been evaluated regarding the design of geo graphical redundancy. It has been 
found necessary to compare the number of required data center locations on the one hand and the 
availability of safety applications in catastrophic situations on the other. It is important to point out that 
the utilization of existing SIL4 Data Centers in combination with replication of the safe application 
state over the different sites instead of having local replication may represent a promising option for 
implementing geo graphical redundancy. In this regard, the so called 'split brain' issue (maintenance 
resulting in inconsistencies between individual but overlapping parts of the overall system) has been 
briefly discussed as well. It is necessary to resolve this issue either per individual application or 
generally for the whole SIL4 Data Center architecture, but it was decided to not investigate this 
problem further as part of this research collaboration. 

To sufficiently consider security aspects of the SIL4 Data Center's architecture, the collaborating 
partners rely on the EU research project X2Rail-3, as there is an existing work package on 
cybersecurity. As it is based on IEC 62443, it is directly applicable to serve the requirements of the 
SIL4 Data Center. 

Besides addressing architectural characteristics of the SIL4 Data Center, the complexity of integration 
and testing has been assessed thoroughly. This is one of the most important aspects of this report, 
since the complexity in cross-vendor integration and testing is expected to grow super-linearly 
according to the number of involved vendors. Therefore, this report lists several scenarios on which 
integration and testing must be executed.  
It cannot be overstated that attention must be paid to the fact that there is a shift in responsibilities for 
integration and testing, as it will move from the supplier towards the infrastructure operator, who will 
have to take over the role of a system integrator. It is therefore necessary to maintain control over the 
overall system complexity, which can be achieved through a sound and standardized integration 
concept, including standardized processes, interfaces, tools, and highly automated test cases. 

Additionally, the partners listed constraints from a certification and homologation perspective, as the 
SIL4 Data Center's modular approach towards architecture is expected to lead to significantly greater 
efforts to achieve certification and homologation. For instance, if one safe application is to run on 
several RTE implementations, it is to be certified for each individual combination. Moreover, 
application segregation needs to be ensured, so that applications do not have side effects on the 
operation of safe applications.  
It is therefore of the upmost importance to the collaborating partners to find a middle ground between 
flexibility and effort to address this issue. 

Finally, this report shows that the outlined standardization, modularization, and automation of the SIL4 
Data Center approach represent a major opportunity for the future of rail operations. However, it 
comes at a significant price as serious investments need to be undertaken to move from the 
conceptual level to reality and to reap the expected benefits. In addition to that, the multi-vendor 
concept will create greater transparency regarding the cost structures of such large systems. 

As outlined at the very beginning of this report, Deutsche Bahn and Siemens Mobility aimed to jointly 
investigate a key element of future rail operations. Though there may still be a long way ahead, based 
on the results portrayed in this research report, the partners are convinced that if designed and 
implemented the right way, the SIL4 Data Center is of great importance for enabling an increase 
in capacity, quality, and efficiency of rail operations. It is incredibly important to avoid the summarized 
pitfalls and effort drivers and further focus on feasibility and practicability of implementation. In this 
spirit, Deutsche Bahn and Siemens Mobility look forward to continuing to implement the SIL4 Data 
Center. 
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10 Annex 

10.1 Terms and Abbreviations 

Term / 
Abbreviation 

Description 

2oo3 principle 2-out-of-3 principle 

This is a fail-safe system in which two application replicas (including an 
RTE) are running as a safe solution, each of the replicas on one hardware 
computing node. If one of the instances fails, the system will stop. 

To increase availability (e.g., in case of hardware failures), an additional third 
RTE instance is running, leading to a 2oo3 system as the normal mode. 

If one of the three instances fails, the other two instances are running in 2oo2 
mode which is still safe but has decreased availability. 

2x2oo2 principle 2 times 2-out-of-2 principle 

This is a fail-safe system in which two application replicas (including an 
RTE) are running as a safe solution, each of the replicas on one hardware 
computing node. If one of the instances fails, the system will stop. 

To increase availability (e.g., in case of hardware failures), the same 2oo2 
system exists a second time, leading to a 2x2oo2 system as the normal 
mode. 

If one of the instances fails, the containing 2oo2 fails, and this leads to 
1x2oo2 mode which is still safe but has decreased availability. 

API Application Programming Interface of the RTE 

This is the interface of the RTE which includes all specifications and rules to 
be fulfilled by the application. 

It defines mechanisms for interactions between multiple applications, and 
services of the RTE, the kinds of calls or requests that can be made, how to 
make them, data formats that should be used, the conventions to follow, etc. 

Application Computing software that carries out the business logic, and runs on top of the 
RTE. 

Application bundle Package of applications running together as one (1) application replica 

This means that the RTE voter does not see the bundle-internal data flow, 
only the output of the bundle is relevant for safe voting. 

For such an application bundle, an Application Manager is necessary. 

Application 
Manager 

(AppMan) 

Software part of the RTE which provides all needed services to run several 
applications together as bundle with time-critical inter-application 
communication. 

Application replica Instances of the same application 

All application replicas run synchronized in parallel. 

From an outside-world point of view, they act "as one": they receive one input 
and provide one output. 

Output of an individual application replica is not safe itself, but safety is 
achieved by voting of the outputs of several application replicas. 
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Term / 
Abbreviation 

Description 

APS Advanced Protection System 

APS* is a placeholder for any of the APS components (example: SL = Safety 
Logic) 

APS is a SIL4 subsystem within an RCA based architecture. 

APS-FOT APS Fixed Object Transactor. This is an application within the RCA 
architecture. 

APS-MOT APS Mobile Object Transactor. This is an application within the RCA 
architecture. 

APS-MT APS Movement Authority Transactor. This is an application within the RCA 
architecture. 

APS-OA APS Object Aggregation. This is an application within the RCA architecture. 

APS-SL APS Safety Logic. This is an application within the RCA architecture. 

APS-SM APS Safety Manager. This is an application within the RCA architecture. 

ATO Automatic Train Operation 

Basic OS Basic operating system of the RTE and a subproduct of the RTE (e.g., Linux) 

CCS Command, Control and Signaling 

CISO Chief Information Security Officer 

This is the role of the overall manager responsible for IT security within an 
organization. 

Clock Safety relevant functionality of the RTE to provide a safe, strictly monotonous 
clock for any timing-relevant mechanism of the RTE, e.g., the cyclic triggering 
for the application replicas 

Computing node Abstract term for a computing resource used by an application replica with 
its RTE 

It can be a hardware computing node (computer, CPU, CPU core) or a virtual 
computing node. 

Configuration data 

CFG data 

Each software layer may define for itself which kind of data can be configured 
to use the software layer in the required way. 

Such data is called "configuration data". 

Configuration data belongs close to the software and should not be confused 
with engineering data, which is defined for a specific installation. 
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Term / 
Abbreviation 

Description 

CONNECTA CONtributing to Shift2Rail's NExt generation of highly Capable and safe TCMS and 
brAkes 

https://cordis.europa.eu/project/id/730539 

COTS Commercial off-the-shelf 

Engineering data 
ENG data 

Data defined for a specific customer installation. 

This data depends on the specific topology and is defined specifically for each 
installation. 

EULYNX European initiative by infrastructure managers to standardize interfaces and 
elements of the signaling systems 

See https://www.eulynx.eu 

FRMCS Future Railway Mobile Communication System 

Geographical 
redundancy 

Redundancy where application replicas of an installation are distributed 
over sites at different geographical locations 

If one site fails (e.g., due to a blackout) the other site continues to run. This 
means, a failure of one site does not lead to a system failure. 

Hardware 
computing node 

Dedicated computer (using one to many CPUs) or dedicated CPU (using one 
to many cores) or dedicated CPU core 

It is up to the safety layer of the RTE to select which of the hardware 
computing nodes is provided/used to fulfill the safety case. 

All hardware computing nodes should be COTS components. 

HIDS Host-based Intrusion Detection System 

Horizontal 
integration 

Integration of different applications of an installation, each application running 
on an RTE. 

IAM Identify Access Management 

IXL Interlocking 

Legacy Application A currently existing application, e.g., the interlocking logic for DB 

A legacy application is running on a legacy platform which includes a legacy 
safety layer. 

Legacy solution A currently existing solution, e.g., the interlocking logic for DB 

A legacy solution is a legacy application running on a virtual computing node 
in the same SIL4 Data Center next to an RCA solution. 

https://cordis.europa.eu/project/id/730539
https://www.eulynx.eu/
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Term / 
Abbreviation 

Description 

Load OS Extended bootloader which is preinstalled on the hardware computing 
nodes and is usually executed directly after (re)booting the computing 
platform 

The main functionality of the load OS is the secure bootstrapping 
(authentication and data integrity) of software components, typically the 
virtualization solution and the kernel. 

NIDS Network Intrusion Detection System 

OCORA Open CCS On-board Reference Architecture 

https://github.com/OCORA-Public/Publication 

Product An application package which is provided by a vendor.  

A product can consist of several subproducts. 

RaSTA Rail Safe Transport Application 

RaSTA is a unified safety-related communication protocol for the 
standardized communication between different rail systems. 

RBC Radio Block Center 

RCA Reference CCS Architecture 

https://ertms.be/workgroups/ccs_architecture 

RTE instance Each RCA installation is implemented by several RTE instances running 
distributed on several hardware computing nodes. 

With each RTE instance (on separated hardware computing nodes), 
standalone application replicas are running. 

Example: 
In an RTE using the 2oo3 principle, the RTE is running in three instances on 
three hardware computing nodes, e.g., COTS CPUs) each with an application 
replica of the same application. 

Runtime 
environment  
(RTE) 

Application platform providing basic services to the application to support 
SIL4, such as: 

• implementation of the fail-safety principle (redundancy support, voting 
of output) 

• programming model 

• general services (like diagnostics) 

From a commercial point of view, it is at the same time a product which can 
be provided by different vendors. 

Safety layer Software layer which accomplishes and guarantees the safety integrity level 
of hosted applications 

It is expected to comprise functions that ensure that the computing platform 
meets the railway standards EN 50126, EN 50128, EN 50657 and EN 50129 
in their application up to SIL4 by covering: 

https://github.com/OCORA-Public/Publication
https://ertms.be/workgroups/ccs_architecture
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Term / 
Abbreviation 

Description 

• integrity checking 

• fault tolerance mechanism (e.g., achieved through redundancy and 
voting, or through diagnostic functions) 

• synchronization and communication services related to safety (e.g., 
needed for fault tolerance) 

• hardware and software monitoring as needed in safety context 

The specific technical implementation of functional safety is up to the RTE 
vendor and legacy vendor and agnostic towards hosted applications. 

Legacy solutions also have their own safety layers, but within a legacy 
solution, the API between safety layer and application is defined specifically 
for the needs of the legacy application. 

SCI* Standardized Communication Interface in a EULYNX architecture 

SCI* is a placeholder for the different interfaces (examples: SCI-P, SCI-TDS). 

SDI* Standardized Diagnostic Interface in a EULYNX architecture 

 SDI* is a placeholder for the different diagnostic interfaces (examples: SDI-P, 
SDI-TDS) 

SIEM Security, Information and Event Management 

SIL 
SIL4 

Safety Integrity Level 

Safety Integrity Level 4 

SMI* Standardized Maintenance Interface in a EULYNX architecture 

 SMI* is a placeholder for the different maintenance interfaces (examples: 
SMI-P, SMI-TDS) 

SRAC Safety-Relevant Application Condition 

These are safety-relevant conditions (= rules) provided by a safety-relevant 
software which need to be fulfilled by the (human and technical) user of the 
safety-relevant software. 

The fulfillment of these SRACs must be evaluated by the user from a safety 
point of view and the fulfillment must be confirmed by validation and 
assessment. 

Subproduct Part of a product 

A subproduct is provided as part of the product by the same vendor (as the 
product). 

The division of a product into subproducts makes sense in case that the 
operational handling of individual parts of the product is done in different ways 
due to different lifecycles or different safety integrity levels. 

Example: 
The product RTE is divided into the subproducts 

• SIL4 safety layer 

• non-SIL basic OS 
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Term / 
Abbreviation 

Description 

T3 Tool class T3 as defined in EN 50128  

Virtualization Virtualization solution to encapsulate individual installations running on the 
same hardware computing nodes in separated virtual machines 

It is part of the computing platform and a standalone product provided by the 
virtualization vendor. 

VM Virtual Machine 

X2Rail-[1..3] Shift2Rail 

https://shift2rail.org/, https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-
3 

 

  

https://shift2rail.org/
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
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